Integration 11L

1 a $\lim _{\delta x \rightarrow 0} \sum_{x=3}^{12} x^{2} \delta x=\int_{3}^{12} x^{2} \mathrm{~d} x$
This is the limit as the width of the strip tends towards 0.

$$
\begin{aligned}
\int_{3}^{12} x^{2} \mathrm{~d} x & =\left[\frac{x^{3}}{3}\right]_{3}^{12} \\
& =576-9 \\
& =567
\end{aligned}
$$

b $\lim _{\delta x \rightarrow 0} \sum_{x=9}^{25} \sqrt{x} \delta x=\int_{9}^{25} \sqrt{x} \mathrm{~d} x$
This is the limit as the width of the strip tends towards 0 .

$$
\begin{aligned}
\int_{9}^{25} \sqrt{x} \mathrm{~d} x & =\int_{9}^{25} x^{\frac{1}{2}} \mathrm{~d} x \\
& =\left[\frac{2 x^{\frac{3}{2}}}{3}\right]_{9}^{25} \\
& =\frac{250}{3}-\frac{54}{3} \\
& =\frac{196}{3}
\end{aligned}
$$

c $\lim _{\delta x \rightarrow 0} \sum_{x=5}^{10}(x \sqrt{x-1}) \delta x=\int_{5}^{10}(x \sqrt{x-1}) \mathrm{d} x$
This is the limit as the width of the strip tends towards 0 .
Let $I=\int_{5}^{10}(x \sqrt{x-1}) \mathrm{d} x$
Let $u=x-1$
$\frac{\mathrm{d} u}{\mathrm{~d} x}=1$

So replace $\mathrm{d} x$ with $\mathrm{d} u$ and replace $\sqrt{x-1}$ with u and replace x with $u+1$

Change the limits:

x	u
10	9
5	4

c $\quad I=\int_{4}^{9}\left((u+1) u^{\frac{1}{2}}\right) \mathrm{d} u$ $=\int_{4}^{9}\left(u^{\frac{3}{2}}+u^{\frac{1}{2}}\right) d u$

$$
=\left[\frac{2 u^{\frac{5}{2}}}{5}+\frac{2 u^{\frac{3}{2}}}{3}\right]_{4}^{9}
$$

$$
=\frac{2 \times 9^{\frac{5}{2}}}{5}+\frac{2 \times 9^{\frac{3}{2}}}{3}-\frac{2 \times 4^{\frac{5}{2}}}{5}-\frac{2 \times 4^{\frac{3}{2}}}{3}
$$

$$
=\frac{486}{5}+\frac{54}{3}-\frac{64}{5}-\frac{16}{3}
$$

$$
=\frac{1456}{15}
$$

$2 \lim _{\delta x \rightarrow 0} \sum_{x=2}^{3} \ln x \delta x=\int_{2}^{3} \ln x \mathrm{~d} x$
This is the limit as the width of the strip tends towards 0 .
Let $I=\int_{2}^{3} \ln x \mathrm{~d} x$
Let $u=\ln x \Rightarrow \frac{\mathrm{~d} u}{\mathrm{~d} x}=\frac{1}{x}$

$$
\frac{\mathrm{d} v}{\mathrm{~d} x}=1 \Rightarrow v=x
$$

$I=[x \ln x]_{2}^{3}-\int_{2}^{3} x \times \frac{1}{x} \mathrm{~d} x$

$$
=3 \ln 3-2 \ln 2-\int_{2}^{3} 1 \mathrm{~d} x
$$

$$
=\ln 3^{3}-\ln 2^{2}-[x]_{2}^{3}
$$

$$
=\ln \left(\frac{27}{4}\right)-3+2
$$

$$
=-1+\ln \left(\frac{27}{4}\right)
$$

$3 \lim _{\delta x \rightarrow 0} \sum_{x=2}^{5} \sqrt[3]{x} \delta x=\int_{2}^{5} \sqrt[3]{x} \mathrm{~d} x$
This is the limit as the width of the strip tends towards 0 .

$$
\begin{aligned}
\int_{2}^{5} \sqrt[3]{x} \mathrm{~d} x & =\int_{2}^{5} x^{\frac{1}{3}} \mathrm{~d} x \\
& =\left[\frac{3 x^{\frac{4}{3}}}{4}\right]_{2}^{5} \\
& =6.41240 \ldots-1.88988 \ldots \\
& =4.523(4 \mathrm{s.f.})
\end{aligned}
$$

