Mechanics 1

Solution Bank

Practice exam paper

1 a *P* has speed 0.2 m s^{-1} and *Q* has speed 0.1 m s^{-1} . So the distance between P and Q is reducing at a rate of 0.1 m s^{-1} . As the particles were initially 0.8 m apart it takes $0.8 \div 0.1 = 8 \text{ s}$ for them to collide. *Alternative method:* Giving distances from initial position of *P*. For *P*: distance = 0.2tFor *Q*: distance = 0.8 + 0.1tSo, *P* and *Q* collide when 0.2t = 0.8 + 0.1t. 0.1t = 0.8t = 8 seconds

- **b** By the conservation of momentum, momentum before = momentum after $4 \times 0.2 + 2 \times 0.1 = 4 \times 0.1 + 2v$ 2v = 0.6 $v = 0.3 \text{ m s}^{-1}$
- **2** a i The train starts to move at t_0 then accelerates, with constant acceleration until t_1 .

ii The train is travelling with constant velocity.

iii The train decelerates, with constant deceleration, until it is stationary at t₃.

b $80(t_2 - t_1) = 120$ $t_2 - t_1 = 1.5$

Therefore each unit on the *x*-axis represents 30 minutes. So the total length of the journey is 4 hours.

c Total distance travelled *d* is given by

$$d = \frac{1}{2} \times 1 \times 80 + 120 + \frac{1}{2} \times 1.5 \times 80$$

= 220 km

3 a Taking moments about Q $50g \times 0.5 = 20g \times (3 - x)$ 25 = 20(3 - x) 3 - x = 1.25x = 1.75

Therefore the centre of mass is 0.5 + 1.75 = 2.25 m from A

INTERNATIONAL A LEVEL

Mechanics 1

- **3 b** Taking moments about *P*, $1.75 \times 20g = 3R_{O}$ $R_{Q} = \frac{35}{3}g \text{ N}$ Taking moments about Q, $1.25 \times 20g = 3R_P$ $R_{p} = \frac{25}{3}g \text{ N}$
- 4 a Using Newton's second law, $\mathbf{F} = m\mathbf{a}$ For the 3*m* kg mass, (\downarrow) 3mg – T = 3ma (1) For the 1 kg mass, (1) T - mg = maT = ma + mg(2) Substituting (2) into (1) gives 3mg - (ma + mg) = 3ma2mg = 4ma $a = 0.5 g \,\mathrm{m \, s^{-2}}$

b Using
$$s = ut + \frac{1}{2}at^2$$
 gives
 $1.2 = \frac{1}{2}(0.5g)t^2$
 $t^2 = \frac{2.4}{0.5g}$
 $t = \frac{2\sqrt{6}}{7}$
 $= 0.700$ s (3 s.f.)

- 5 a Using Newton's second law, $\mathbf{F} = m\mathbf{a}$, on the system $(\rightarrow) 5940 - 1500 \mu g = 1500 \times 2$ $1500 \mu g = 5940 - 3000$ $\mu = \frac{5940 - 3000}{1500g}$ = 0.2 as required
 - **b** For the smaller sledge $(\rightarrow) T - 300 \mu g = 300 a$ $T = 300a + 300\mu g$ = 300(2) + 300(0.2)g= 1188 N

c Constant acceleration/ constant force/ constant friction

INTERNATIONAL A LEVEL

Mechanics 1

Solution Bank

d Using v = u + at at point the bar snaps gives $v = 2(5) = 10 \text{ m s}^{-1}$ Using Newton's second law, $\mathbf{F} = m\mathbf{a}$ $(\rightarrow) -300\mu g = 300a$ $a = -\mu g$ $= -0.2g \text{ m s}^{-2}$ Using $v^2 = u^2 + 2as$ gives $0 = 10^2 + 2(-0.2g)s$ $s = \frac{100}{0.4g}$

$$= 25.5 \text{ m} (3 \text{ s.f.})$$

6 a Between A and B

$$|\mathbf{v}| = \sqrt{5^2 + 4^2}$$

= $\sqrt{41}$ km h⁻¹
Between *B* and *C*
 $|\mathbf{v}| = \sqrt{8^2 + (-2)^2}$
= $\sqrt{68}$ km h⁻¹
Total distance travelled is
 $(3\sqrt{41} + 4\sqrt{68})$ km
Since the ship travels this distance in 7 hours, the average speed between A and C is
 $(3\sqrt{41} + 4\sqrt{68})$

 $\frac{\left(3\sqrt{41}+4\sqrt{68}\right)}{7} = 7.46 \text{ km h}^{-1} (3 \text{ s.f.})$

b Let port *A* be the origin, then the position vector of port *C* is $\mathbf{r} = 3(5\mathbf{i} + 4\mathbf{j}) + 4(8\mathbf{i} - 2\mathbf{j})$ $= 47\mathbf{i} + 4\mathbf{j}$ $|\mathbf{r}| = \sqrt{47^2 + 4^2}$ $\sqrt{2225}$

$$=\sqrt{2225}$$
$$=5\sqrt{89} \text{ km}$$

Since the ship is travelling at 10 km h⁻¹, the time taken for the ship to reach A is $\frac{5\sqrt{89}}{10} = 4.72 \text{ hours (3 s.f.)}$

7 **a** Using Newton's second law, $\mathbf{F} = m\mathbf{a}$ $(\nearrow) P + P \cos \theta = mg \sin \theta$ $P(1 + \cos \theta) = mg \sin \theta$ $P = \frac{mg \sin \theta}{1 + \cos \theta}$ as required

Mechanics 1

Solution Bank

- 7 **b** Using Newton's second law, $\mathbf{F} = m\mathbf{a}$ (\mathbb{N}) $R = P \sin \theta + mg \cos \theta$ $R = \frac{mg \sin^2 \theta}{1 + \cos \theta} + mg \cos \theta$ $= \frac{mg \sin^2 \theta + mg \cos \theta (1 + \cos \theta)}{1 + \cos \theta}$ $= \frac{mg \sin^2 \theta + mg \cos \theta + mg \cos^2 \theta}{1 + \cos \theta}$ $= \frac{mg + mg \cos \theta}{1 + \cos \theta}$ $= \frac{mg (1 + \cos \theta)}{1 + \cos \theta}$ = mg as required
 - c Using Newton's second law, $\mathbf{F} = m\mathbf{a}$ ($\boldsymbol{\checkmark}$) mg sin 30 - 0.25mg = ma a = 0.5g - 0.25ga = 0.25gTherefore initial acceleration is 0.25g m s⁻² down the slope.

