Solution Bank

1

Review exercise 2

1 **a**
$$12-7k+d=3k^2 \Rightarrow 3k^2+7k-12=d$$

 $3k^2+d=k^2-10k \Rightarrow -2k^2-10k=d$

Subtracting the second equation from the first gives

$$5k^2 + 17k - 12 = (5k - 3)(k + 4) = 0$$

So
$$k = \frac{3}{5} = 0.6$$
 or $k = -4$

b Since the sequence contains only integer terms, k = -4.

$$u_4 = 12 - 7(-4) = 40$$
, $u_5 = 3(-4)^2 = 48$

So common difference d is $d = u_5 - u_4 = 48 - 40 = 8$

The first term a satisfies

$$a + 3d = u_4 \Rightarrow a = 40 - 3(8) = 16$$

So
$$a = 16$$
, $d = 8$

2 a
$$a = 19p - 18$$

$$d = u_2 - a = (17p - 8) - (19p - 18) = 10 - 2p$$

So
$$u_{30} = a + 29d = (19p - 18) + 29(-2p + 10)$$

$$u_{30} = 272 - 39 p$$

b
$$S_{31} = \frac{31}{2}(2a + (31 - 1)d) = 0$$

$$\Rightarrow 2a + 30d = 0$$

So
$$2(19p-18)+30(10-2p)=0$$

$$(38-60)p-36+300=0$$

$$22p = 264$$

$$p = 12$$

3 a
$$u_2 = ar = 256, u_8 = ar^7 = 900$$

$$\frac{ar^7}{ar} = \frac{900}{256}$$

$$\Rightarrow r^6 = \frac{225}{64}$$

$$\Rightarrow \ln r^6 = \ln \left(\frac{225}{64} \right)$$

$$\Rightarrow 6 \ln r - \ln \left(\frac{225}{64} \right) = 0 \quad \text{(as } \ln x^k = k \ln x\text{)}$$

$$\Rightarrow 6 \ln r + \ln \left(\frac{64}{225} \right) = 0 \quad \text{(as } \ln x^{-1} = -\ln x\text{)}$$

Solution Bank

3 b Noting r > 1, so r is positive

$$r = \left(\frac{225}{64}\right)^{\frac{1}{6}} = 1.2331060... = 1.23 \text{ (3 s.f.)}$$

4 a 4, 4r, $4r^2$,... $4+4r+4r^2=7$ $4r^2+4r-3=0$ (as required)

Use ar^{n-1} to write down expressions for the first three terms. Here a = 4 and n = 1, 2, 3

b
$$4r^2 + 4r - 3 = 0$$

 $(2r-1)(2r+3) = 0$
 $r = \frac{1}{2}, r = -\frac{3}{2}$

Factorise
$$4r^2 + 4r - 3 = -12$$

 $(-2) + (+6) = +4$, so
 $4r^2 - 2r + 6r - 3 = 2r(2r - 1) + 3(2r - 1)$
 $= (2r - 1)(2r + 3)$

$$c \quad r = \frac{1}{2}$$

$$\frac{a}{1-r} = \frac{4}{1-\frac{1}{2}}$$

$$= \frac{4}{\frac{1}{2}}$$

$$= 8$$

Use
$$S_{\infty} = \frac{a}{1-r}$$

Here $a = 4$ and $r = \frac{1}{2}$

5 **a**
$$ar^3 = x, ar^4 = 3, ar^5 = x + 8$$

 $\frac{ar^5}{ar^4} = \frac{ar^4}{ar^3}$
so $\frac{x+8}{3} = \frac{3}{x}$
 $x(x+8) = 9$
 $x^2 + 8x - 9 = 0$
 $(x+9)(x-1) = 0$
 $x = 1, x = -9$
 $r = \frac{ar^4}{ar^3} = \frac{3}{x}$
When $x = 1, r = 3$
When $x = -9, r = -\frac{1}{3}$

When
$$x = -9$$
, $r = -\frac{1}{3}$
b $r = -\frac{1}{3}$
 $ar^4 = 3$
 $a\left(-\frac{1}{3}\right)^4 = 3$
 $a = 243$

Solution Bank

5 c
$$S_{\infty} = \frac{a}{1-r} = \frac{243}{1+\frac{1}{2}} = 182.25$$

6 a
$$a_{n+1} = 3a_n + 5$$

 $n = 1: a_2 = 3a_1 + 5$
 $a_2 = 3k + 5$

Use the given formula with n = 1

b
$$n = 2$$
: $a_3 = 3a_2 + 5$
= $3(3k + 5) + 5$
= $9k + 15 + 5$
= $9k + 20$

c i
$$\sum_{r=1}^{4} a_r = a_1 + a_2 + a_3 + a_4$$

 $n = 3 : a_4 = 3a_3 + 5$
 $= 3(9k + 20) + 5$
 $= 27k + 65$

This is not an arithmetic series.

You cannot use a standard formula, so work out each separate term and then add them together to find the required sum.

$$\sum_{r=1}^{4} a_r = k + (3k+5) + (9k+20) + (27k+65)$$
$$= 40k+90$$

ii
$$\sum_{r=1}^{4} a_r = 10(4k+9)$$

There is a factor of 10, so the sum is divisible by 10.

Give a conclusion.

3

7 a Common ratio is
$$r = -4x$$

Condition for the convergence of infinite sum is

$$|r| < 1 \Rightarrow |-4x| < 1$$

 $\Rightarrow |x| < \frac{1}{4}$

b
$$\sum_{r=1}^{\infty} 6 \times (-4x)^{r-1} = S_{\infty} = \frac{24}{5}$$

Another equation for S_{∞} is $S_{\infty} = \frac{a}{1-r} = \frac{6}{1+4x}$

So
$$\frac{6}{1+4x} = \frac{24}{5}$$
$$\Rightarrow 30 = 24 + 96x$$
$$\Rightarrow x = \frac{6}{96} = \frac{1}{16}$$

8 **a**
$$r = \frac{ar}{a} = \frac{u_2}{u_1}$$

So $r = \frac{\frac{50}{6}}{10} = \frac{5}{6}$

Solution Bank

:. As
$$|r| < 1$$
, $S_{\infty} = \frac{a}{1-r} = \frac{10}{1-\frac{5}{6}} = 60$

8 b
$$a = 10, r = \frac{5}{6}$$

$$S_k = \frac{10\left(1 - \left(\frac{5}{6}\right)^k\right)}{1 - \frac{5}{6}}$$
As $S_k > 55 \Rightarrow 1 - \left(\frac{5}{6}\right)^k > \frac{55}{60}$

$$\Rightarrow 1 - \left(\frac{5}{6}\right)^k > \frac{11}{12}$$

$$\Rightarrow \frac{1}{12} > \left(\frac{5}{6}\right)^k \Rightarrow \log\left(\frac{1}{12}\right) > \log\left(\frac{5}{6}\right)^k$$

$$\Rightarrow \log\left(\frac{1}{12}\right) > k\log\left(\frac{5}{6}\right)$$

$$\Rightarrow k > \frac{\log\left(\frac{1}{12}\right)}{\log\left(\frac{5}{6}\right)}$$

(the inequality reverses direction in the final step because $\ln \frac{5}{6} < 0$)

c k must be a positive integer.

$$\frac{\ln\frac{1}{12}}{\ln\frac{5}{6}} = 13.629 \text{ (3 d.p.)}$$

So the minimum value of k is 14.

9 a
$$a = 2400, r = 1.06$$

After 4 years,

 $2400(1.06)^3 = 2858.44... = 2860$ to the nearest 10.

b
$$2400 \times 1.06^{N-1} > 6000 \Rightarrow 1.06^{N-1} > 2.5$$

 $\Rightarrow \log 1.06^{N-1} > \log 2.5 \Rightarrow (N-1)\log 1.06 > \log 2.5$

c Rearranging the inequality

$$N > \frac{\ln 2.5}{\ln 1.06} + 1 = 16.7 \text{ (1 d.p.)}$$

So
$$N = 17$$

d The total amount raised is $5(S_{10})$

$$S_{10} = \frac{a(1-r^{10})}{1-r} = \frac{2400(1-1.06^{10})}{1.106} = 31633.90 \text{ (2 d.p.)}$$

Therefore the total amount raised is 5×31633.9 , which to the nearest £1000 is £158000

Solution Bank

10 a y ↑

b There are two solutions in the interval $0 \le x \le 360^{\circ}$.

11 a
$$\sin \theta = \cos \theta$$

 $\tan \theta = 1$

b
$$\tan \theta = 1$$
, $0 \le \theta \le 2\pi$
 $\theta = \frac{\pi}{4}$ and $\theta = \frac{5\pi}{4}$

(Note, in earlier versions of the book an erroneous question 12 was removed; all subsequent numbers will therefore by 1 higher than printed here.)

$$3\tan^2 x = 1$$
$$\tan x = \pm \frac{1}{\sqrt{3}}$$

For
$$\tan x = \frac{1}{\sqrt{3}}$$

$$x = 30^{\circ}$$

So
$$x = 30^{\circ}$$
 or $x = 210^{\circ}$

For
$$\tan x = -\frac{1}{\sqrt{3}}$$

 $x = 330^{\circ} \text{ (or } -30^{\circ}\text{)}$

So
$$x = 330^{\circ}$$
 or $x = 150^{\circ}$
So $x = 30^{\circ}$, 150°, 210° or 330°

Solution Bank

13
$$2\sin(\theta - 30^\circ) = \sqrt{3}$$

 $\sin(\theta - 30^\circ) = \frac{\sqrt{3}}{2}$
 $\theta - 30^\circ = 60^\circ$

So
$$\theta - 30^{\circ} = 60^{\circ}$$
 or $\theta - 30^{\circ} = 120^{\circ}$
When $\theta - 30^{\circ} = 60^{\circ}$
 $\theta = 60^{\circ} + 30^{\circ}$
 $= 90^{\circ}$
When $\theta - 30^{\circ} = 120^{\circ}$
 $\theta = 120^{\circ} + 30^{\circ}$
 $= 150^{\circ}$
So $\theta = 90^{\circ}$ or 150°

14 a
$$2\cos^2 x = 4 - 5\sin x$$

 $2(1 - \sin^2 x) = 4 - 5\sin x$
 $2 - 2\sin^2 x = 4 - 5\sin x$
 $2\sin^2 x - 5\sin x + 2 = 0$ (as required)

b Let
$$\sin x = y$$

 $2y^2 - 5y + 2 = 0$
 $(2y - 1)(y - 2) = 0$
So $y = \frac{1}{2}$ or $y = 2$
When $\sin x = \frac{1}{2}$, $x = 30^\circ$
or $x = 180^\circ - 30^\circ = 150^\circ$
 $\sin x = 2$ is impossible.
 $x = 30^\circ$ or 150°

15
$$2 \tan^2 x - 4 = 5 \tan x$$

 $2 \tan^2 x - 5 \tan x - 4 = 0$

Using the quadratic formula:

$$\tan x = \frac{5 \pm \sqrt{(-5)^2 - 4(2)(-4)}}{2(2)}$$
$$= \frac{5 \pm \sqrt{57}}{4}$$

When
$$\tan x = \frac{5 + \sqrt{57}}{4}$$
, $x = 72.3^{\circ}$
or $x = 72.3^{\circ} + 180^{\circ} = 252.3^{\circ}$

16
$$5\sin^2 x = 6(1 - \cos x)$$

 $5\sin^2 x + 6\cos x - 6 = 0$
 $5(1 - \cos^2 x) + 6\cos x - 6 = 0$
 $5 - 5\cos^2 x + 6\cos x - 6 = 0$
 $5\cos^2 x - 6\cos x + 1 = 0$
 $(5\cos x - 1)(\cos x - 1) = 0$
So $\cos x = \frac{1}{5}$ or $\cos x = 1$
When $\cos x = \frac{1}{5}$, $x = 78.5^\circ$
or $x = 360^\circ - 78.5^\circ = 281.5^\circ$
When $\cos x = 1$, $x = 0^\circ$ or 360°
 $x = 0^\circ$, 78.5° , 281.5° or 360°

17 LHS =
$$\cos^2 x (\tan^2 x + 1)$$

= $\cos^2 x \left(\frac{\sin^2 x}{\cos^2 x} + 1 \right)$
= $\sin^2 x + \cos^2 x$
= RHS

18
$$f(x) = x^3 - 12x^2 + 48x$$

 $f'(x) = 3x^2 - 24x + 48$
 $= 3(x - 4)^2$
 $(x - 4)^2 > 0$ for all real values of x
So $3x^2 - 24x + 48 > 0$ for all real values of x.
So $f(x)$ is increasing for all real values of x.

19 a
$$y = x + \frac{2}{x} - 3$$

When $y = 0$, $x + \frac{2}{x} - 3 = 0$
 $x^2 + 2 - 3x = 0$
 $x^2 - 3x + 2 = 0$
 $(x - 1)(x - 2) = 0$
 $x = 1$ or $x = 2$
 $A(1, 0)$ and $B(2, 0)$

Solution Bank

19 b
$$y = x + 2x^{-1} - 3$$

 $\frac{dy}{dx} = 1 - 2x^{-2}$
 $= 1 - \frac{2}{x^2}$

Let $\frac{dy}{dx} = 0$ to find the minimum

$$x^2 = 2$$

$$x = \pm \sqrt{2}$$

x is positive, so $x = \sqrt{2}$.

When
$$x = \sqrt{2}$$
,

$$y = \sqrt{2} + \frac{2}{\sqrt{2}} - 3$$

$$= \sqrt{2} + \frac{2\sqrt{2}}{2} - 3$$
$$= 2\sqrt{2} - 3$$

C has coordinates
$$(\sqrt{2}, 2\sqrt{2} - 3)$$

20

Draw a diagram. Let *h* be the height of the cylinder.

a Surface area,
$$S = 2\pi rh + 2\pi r^2$$

Volume = $\pi r^2 h = 128\pi$

$$h = \frac{128\pi}{\pi r^2}$$
$$= \frac{128}{r^2}$$

so
$$S = 2\pi r \times \frac{128}{r^2} + 2\pi r^2$$

$$= \frac{256\pi}{r} + 2\pi r^2 \text{ (as required)}$$

20 b
$$\frac{dS}{dr} = 4\pi r - \frac{256\pi}{r^2}$$

 $4\pi r - \frac{256\pi}{r^2} = 0$
 $4\pi r = \frac{256\pi}{r^2}$
 $r^3 = 64$
 $r = 4$ cm
When $r = 4$,
 $S = \frac{256\pi}{(4)} + 2\pi(4)^2$
 $= 64\pi + 32\pi$
 $= 96\pi$ cm²

21 a
$$y = 3x^{2} + 4\sqrt{x}$$

$$= 3x^{2} + 4x^{\frac{1}{2}}$$

$$\frac{dy}{dx} = (3 \times 2x^{1}) + (4 \times \frac{1}{2}x^{-\frac{1}{2}})$$

$$\frac{dy}{dx} = 6x + 2x^{-\frac{1}{2}}$$
Or:

$$\frac{dy}{dx} = 6x + \frac{2}{x^{\frac{1}{2}}} = 6x + \frac{2}{\sqrt{x}}$$

b
$$\frac{dy}{dx} = 6x + 2x^{\frac{-1}{2}}$$

$$\frac{d^2y}{dx^2} = 6 + \left(2x - \frac{1}{2}x^{-\frac{3}{2}}\right)$$

$$= 6 - x^{\frac{-3}{2}}$$
Or:
$$\frac{d^2y}{dx^2} = 6 - \frac{1}{x^{\frac{3}{2}}}$$
Or:
$$\frac{d^2y}{dx^2} = 6 - \frac{1}{x\sqrt{x}}$$

21 c
$$\int \left(3x^2 + 4x^{\frac{1}{2}}\right) dx = \frac{3x^3}{3} + \frac{4x^{\frac{3}{2}}}{\left(\frac{3}{2}\right)} + C$$
$$= x^3 + 4\left(\frac{2}{3}\right)x^{\frac{3}{2}} + C$$
$$= x^3 + \frac{8}{3}x^{\frac{3}{2}} + C$$
$$(Or: x^3 + \frac{8}{3}x\sqrt{x} + C)$$

22
$$\int_{1}^{8} x^{\frac{1}{3}} - x^{-\frac{1}{3}} dx$$

$$= \left(\frac{3}{4} \left(8\right)^{\frac{4}{3}} - \frac{3}{2} \left(8\right)^{\frac{2}{3}}\right) - \left(\frac{3}{4} \left(1\right)^{\frac{4}{3}} - \frac{3}{2} \left(1\right)^{\frac{2}{3}}\right)$$

$$= \left(\frac{3}{4} \left(16\right) - \frac{3}{2} \left(4\right)\right) - \left(\frac{3}{4} \left(1\right) - \frac{3}{2} \left(1\right)\right)$$

$$= \frac{27}{4}$$

$$= 6\frac{3}{4}$$

23
$$\int_{0}^{6} (x^{2} - kx) dx$$

$$= \left[\frac{x^{3}}{3} - \frac{kx^{2}}{2} \right]_{0}^{6}$$

$$= \left(\frac{6}{3} - \frac{k(6)^{2}}{2} \right) - \left(\frac{0^{3}}{3} - \frac{k(0)^{2}}{2} \right)$$

$$= 72 - 18k = 0$$

$$k = 4$$

24 a
$$-x^4 + 3x^2 + 4 = 0$$

 $(-x^2 + 4)(x^2 + 1) = 0$
 $(2 - x)(2 + x)(x^2 + 1) = 0$
 $x^2 + 1 = 0$ has no real solutions.
So there are two solutions $x = -2$ or $x = 2$.
 $A(-2, 0)$ and $B(2, 0)$

Solution Bank

24 b
$$R = \int_{-2}^{2} (-x^4 + 3x^2 + 4) dx$$

$$= \left[-\frac{x^5}{5} + \frac{3x^3}{3} + 4x \right]_{-2}^{2}$$

$$= \left[-\frac{x^5}{5} + x^3 + 4x \right]_{-2}^{2}$$

$$= \left(-\frac{2^5}{5} + 2^3 + 4(2) \right) - \left(-\frac{(-2)^5}{5} + (-2)^3 + 4(-2) \right)$$

$$= \left(-\frac{32}{5} + 8 + 8 \right) - \left(\frac{32}{5} - 8 - 8 \right)$$

$$= 19.2 \text{ units}^2$$

25 Area =
$$\int_{1}^{4} (x-1)(x-4) dx$$

= $\int_{1}^{4} x^{2} - 5x + 4 dx$
= $\left(\frac{x^{3}}{3} - \frac{5x^{2}}{2} + 4x\right)_{1}^{4}$
= $\left(\frac{(4)^{3}}{3} - \frac{5(4)^{2}}{2} + 4(4)\right)$
= $-\left(\frac{(1)^{3}}{3} - \frac{5(1)^{2}}{2} + 4(1)\right)$
= $-4\frac{1}{2}$

 \therefore Area = $4\frac{1}{2}$ units² (area cannot be a negative value)

26 a Solving simultaneously

$$5-x^{2} = 3-x$$

$$x^{2}-x-2 = 0$$

$$(x-2)(x+1) = 0$$

$$x = 2 \text{ or } x = -1$$
when $x = 2$, $y = 1$
when $x = -1$, $y = 4$

$$P(-1, 4) \text{ and } Q(2, 1)$$

Solution Bank

26 b Shaded area =

area under the curve between P and Q and the x-axis – area of trapezium

Area =
$$\int_{-1}^{2} (5 - x^2) dx - \frac{1}{2} \times 3(1 + 4)$$

= $\left[5x - \frac{x^3}{3} \right]_{-1}^{2} - \frac{15}{2}$
= $\left[5(2) - \frac{2^3}{3} \right] - \left[5(-1) - \frac{(-1)^3}{3} \right] - \frac{15}{2}$
= $\left[10 - \frac{8}{3} \right] - \left[-5 + \frac{1}{3} \right] - \frac{15}{2}$
= 4.5 units²

27 a

b

U							
	x	1	1.2	1.4	1.6	1.8	2
	$\frac{1}{x}$	1	0.833	0.714	0.625	0.556	0.5

$$\mathbf{c} \quad A = \int_{1}^{2} \left(\frac{1}{x}\right) dx$$

$$\int_{a}^{b} y dx = \frac{1}{2} h \left(y_{0} + 2\left(y_{1} + y_{2} + \dots + y_{n-1}\right) + y_{n}\right)$$

$$\int_{1}^{2} \left(\frac{1}{x}\right) dx = \frac{1}{2} (0.2) \left(1 + 2\left(0.833 + 0.714 + 0.625 + 0.556\right) + 0.5\right)$$

$$= 0.696 (3 \text{ s.f.})$$

d Overestimate as the curve is concave.

28 a
$$y = \sqrt{1 - x^2}$$

$$\sqrt{1 - x^2} = 0$$

$$1 - x^2 = 0$$

$$x = \pm 1$$

so $x = 1$												
X	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	
$\sqrt{1-x^2}$	1	0.9950	0.9798	0.9539	0.9165	0.866	0.8	0.7141	0.6	0.4359	0	

$$A = \int_{0}^{1} \sqrt{1 - x^{2}} dx$$

$$\int_{a}^{b} y dx = \frac{1}{2} h \left(y_{0} + 2 \left(y_{1} + y_{2} + \dots + y_{n-1} \right) + y_{n} \right)$$

$$\int_{0}^{1} \sqrt{1-x^2} dx = \frac{1}{2} (0.1) (1 + 2(0.9950 + 0.9798 + 0.9539 + 0.9165 + 0.866 + 0.8 + 0.7141 + 0.6 + 0.4359) + 0)$$

$$= 0.776 (3 \text{ s.f.})$$

b Error
$$\frac{\frac{\pi}{4} - 0.776}{\frac{\pi}{4}} \times 100 = 1.2\%$$

Solution Bank

29
$$y = \sqrt{x}$$
 and $y = x^2$
 $\sqrt{x} = x^2$
 $x = x^4$
 $x^4 - x = 0$
 $x(x^3 - 1) = 0$
 $x = 0$ or $x = 1$

The shaded area is given by

$$A = \int_{0}^{1} \sqrt{x} \, dx - \int_{0}^{1} x^{2} \, dx$$

$$= \left[\frac{2}{3} x^{\frac{3}{2}} \right]_{0}^{1} - \left[\frac{1}{3} x^{3} \right]_{0}^{1}$$

$$= \left[\left(\frac{2}{3} (1)^{\frac{3}{2}} \right) - \left(\frac{2}{3} (0)^{\frac{3}{2}} \right) \right] - \left[\left(\frac{1}{3} (1)^{3} \right) - \left(\frac{1}{3} (0)^{3} \right) \right]$$

$$= \frac{2}{3} - \frac{1}{3}$$

$$= \frac{1}{3}$$

Solution Bank

Challenge

1 Many possible solutions are available, such as

$$a_{n+1} = a_n + k, \ a_1 = m, \ \sum_{i=6}^{11} a_i = \sum_{i=12}^{15} a_i$$

$$a_1 = m, \ a_2 = m + k, \ a_3 = m + 2k, \dots$$

$$\sum_{i=6}^{11} a_i = m + 5k + m + 6k + \dots + m + 10k$$

$$= 6m + 45k$$

$$\sum_{i=12}^{15} a_i = m + 11k + m + 12k + m + 13k + m + 14k$$

$$= 4m + 50k$$

$$6m + 45k = 4m + 50k$$

$$5k = 2m$$

$$m = \frac{5}{2}k \text{ as required}$$

2 $2\sin^3 x - \sin x + 1 = \cos^2 x$ $2\sin^3 x - \sin x + 1 = 1 - \sin^2 x$ $2\sin^3 x + \sin^2 x - \sin x = 0$ $\sin x (2\sin^2 x + \sin x - 1) = 0$ $\sin x (2\sin x - 1)(\sin x + 1) = 0$ $\sin x = 0$, $\sin x = \frac{1}{2}$ and $\sin x = -1$ When $\sin x = 0$, x = 0, $x = 180^\circ$ and $x = 360^\circ$ When $\sin x = \frac{1}{2}$, $x = 30^\circ$ and $x = 150^\circ$ When $\sin x = -1$, $x = 270^\circ$