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1 

Exam-style practice: A Level

1 a Let mX  denote the distribution of males 

and 
f

X  denote the distribution of females. 

Then define the random variable
5 2
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mi fj

i j

Y X X
 

   .  

The expected value of Y  is: 
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The variance is: 
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So ~ (570,550).Y N   

In order to calculate ( 560)P Y   we 

standardise to 
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where 
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550

Y
Z


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In order to use the statistic tables we 

reformat our calculation to: 
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Thus using the tables we get: 
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1 b  Using the same notation as the previous 

question, define a new random variable as 

1.4 f mW X X  . 
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2 2 2Var( ) 1.4 5 10 149.W       

So we have  ~ 6,149 .W N    

We want to find ( 0)P W   and we 

standardise then use the tables in order to 

get: 
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2 a Let 2

s  denote the variance of the 

saplings with fertiliser and 2

l  denote the 

variance of the saplings without fertiliser.  
Our hypotheses are:  
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The significance level is 10% (5% at each 

tail) with degrees of freedom: 

13 1 12,

10 1 9.

l

s

v

v

  

  
  

2

2

46.7856,

27.9841.

l

s

s

s




  

From the table, we find the critical value 

of  12,9 0.05 3.07.F   

The test statistic is 
2

2
1.67l

s

s

s
 . 

1.67 3.07  

So there is insufficient evidence to reject 

0H  and we may assume that the two 

populations have equal variance. 
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2 b Let f  denote the mean height of saplings 

with fertiliser and o  denote the mean 

height of saplings without fertiliser.  

The null hypothesis is that the difference 
between the means is 0. The alternative 

hypothesis is that the difference is  
non-zero:  

0

1

: 0

: 0.
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We have standard deviations and sample 

sizes of: 
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We calculate an unbiased estimate of the 

population variance 2  using both 

samples: 
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So: 
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(Note that we used the null hypothesis of 

0 : 0f oH     in this calculation.) 

The 5% (two-tailed) critical value for t  

with 21 degrees of freedom is 21 2.080.t   

So our test statistic value is not significant 

enough to reject 0H . Thus we assume that 

the mean height of plants in both 
populations are the same. 

 

 

2 c The test in part b requires that both the 
variances are equal. The test in part a 

established that this was reasonable. 

 

3 a A 95% confidence interval with 5 degrees 

of freedom has a t  value of 5 2.571.t    

So the confidence interval is of the form: 

ˆ
2.571x

n


   

If we take the higher value of the 

confidence interval, 223.5, we may solve 

for ˆ.   

2

ˆ
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2 6

ˆ214.85 1.0496

ˆ 8.24

ˆ 67.9 (3 s.f.)
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 b The percentage points are 
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







  

We have calculated 2ˆ 67.9   and so can 

calculate that the critical points are 
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2
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5
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So the 95% confidence interval for 
variance is (26.5, 408.5). The 95% 

confidence interval for the standard 

deviation has the square root of the limits 
of this interval as its limits. i.e. (5.14, 

20.2). 
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3 c Let S  denote the span of an adult male’s 

hand. We want to find ( 230)P S   which 

can be standardised to 
230

P Z



  

 
. 

In order to maximise the probability, we 

need 
230 




 to be as small as possible. 

So we choose the biggest value for   and 

  that are in our confidence intervals. 

 

 

230 223.5
0.3218

20.2

1 0.3218

1 0.626

0.374

P Z P Z
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    
 

  

 
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Thus, the highest estimate of the 
proportion of adult males with hand span 

greater than 230 mm is 0.37 (2 d.p.). 

 

4 a  
 2

2 i
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h
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n
 
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1562 5088
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 b  We calculate  

1433.33
1.433

1000.22

5088 1562
1.433

9 9

316.626

317 1.43  (3 s.f.)
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S
b

S

a c bh

c h

  

 

  



 

  

4 c b  tells us the rate at which the confidence 

increases with increased height. In this 

case for every centimetre of height, 

confidence increases by 1.433 units. 

 

 d It would not make sense to have an 

interpretation of a  since it would imply 

that it is possible to have 0 cm height. 

 

 e i  

h   c   317 1.43c h    e   

179 569 572.97 −3.97 

169 561 558.67 2.33 

187 579 584.41 −5.41 

166 561 554.38 6.62 

162 540 548.66 −8.66 

193 598 592.99 5.01 

161 542 547.23 −5.23 

177 565 570.11 −5.11 

168 573 557.24 15.76 

  

  ii The incorrect value is 573 as the 

magnitude of its residual is 

significantly greater than the others. 
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4 f 
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We calculate  

2
2

2

2 2
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 g 297.044 1.534 172c     

 
  561   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 a Let rankx  denote the place in which a 

person came in the actual race and ranky  

denote the rank in which a person came in 
the qualifying lap-times. 

Name rankx  ranky  d  
2
d  

Carl 1 3 −2 4 

Paula 2 2 0 0 

Sarah 3 4 −1 1 

David 4 1 3 9 

Dhruv 5 5 0 0 

Amy 6 7 −1 1 

Jake 7 6 1 1 

Ali 8 8 0 0 

  

 Now we have the data, we sum all 2
d  values 

and get  
2

16d    

 

 

 

 
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2

2

6
1

1

6 16
1

8 8 1

0.810 (3 s.f.)

s

d
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
 
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 b 0 : 0H    

1 : 0H     

We have a sample size of 8 and the 
significance level in the tail is 0.05. From 

the table, the critical value of r  for a 0.05 
significance level with a sample size of 8 

is 0.6429r  , so the critical region is 

0.6429.r   The observed value of 

0.810r   is inside of the critical region, 

so we reject 0.H  There is sufficient 

evidence at the 5% level of significance 
that there is a positive association between 

qualifying lap-times and actual race 
results. 

 

 c Race ranks are not measurable on a 

continuous scale. 
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5 d Data will have 4 values with tied rank. 
Assign a rank equal to the mean of the tied 

ranks. Calculate the PMCC directly from 
the ranked data rather than using the 

formula. 
 

6 a First we find the probability density 
function by differentiating the cumulative 

distribution function. We find that: 

    
3 23

2     0 1
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So, 
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6 b We see that the maximal point occurs 

when 1x   (since we have an increasing 

function) and so we have that the mode  

is 1.  

 

 c The mode   mean and so we say that it is 

negatively skewed. 
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7 Let 
(6 )

2

X X
A


  denote the area enclosed 

by the framework and the ground. 
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