Game theory 6A

- **1 a** In a zero-sum game the winnings of player *A* and player *B* add up to zero. This is not the case in this example; hence the game is not zero-sum.
	- **b** If player *A* plays 2 and player *B* plays 3, player *A* will win 1 and player *B* will win 2.
	- **c** To find the play-safe strategy, we need to find the worst outcomes for both *A* and *B:*

The best worst (maximin) outcome for *A* is to play 3. Similarly, the worst best (minimax) outcome for *B* is to play 3. Hence the play-safe strategy for both players is to play 3.

- **2 a** The play-safe strategy for the row player is the choice which corresponds to the row maximin. The play-safe strategy for the column player is the choice which corresponds to the row minimax.
	- **b** If *A* plays 2 and *B* plays 3, player *A* will win 7 and player *B*, since this is a zero-sum game, will win -7 (or lose 7).
	- **c** The minima of rows $1 3$ are: -3 , 4 , -5 respectively. Hence the row maximin is 4. The maxima of columns $1 - 3$ are: 6, 5, 8 respectively. Hence the column minimax is 5.
	- **d** Based on part **c**, the play-safe strategy for player *A* is to play 2. The play-safe strategy for *B* is to play 2.
	- **e** By the stable solution theorem we conclude that this game has no stable solution. This is because the row maximin (which is 4) \neq column minimax (which is 5).
- **3 a** To find the play-safe strategy for each player, we need to find the row maximin and the column minimax. The minima of the rows are: -1 , -4 , -5 and -3 . So the row maximin is -1 (row 1). The maxima of the columns are: 7, 6 and 8. So the column minimax is 6 (column 2). Thus the playsafe strategy for player *A* is to play 1, and for player *B* to play 2.
	- **b** If player *A* assumes that *B* plays safe, she can maximise her winnings if she plays 2.

4 a

A should play 1 (row maximin $= 2$)

B should play 2 (column minimax $= 2$)

- **b** row maximin $= 2 =$ column minimax
	- \therefore game is stable
- **c** The value of the game for player *A* is equal to the row maximin. Hence the value of the game for player *A* equals 2.
- **d** To rewrite the matrix from *B*'s point of view, we need to multiply all the numbers by -1 :

Now that we switched perspectives, the value of the game for player *B* can be determined by finding the row maximin (as in part **c**). Thus the value of the game for player *B* is -2 .

5 a

R should play 3 (row maximin $= -1$)

S should play 3 (column minimax $= 1$)

5 b row maximin \neq column minimax

$$
-1\,\neq\,1
$$

so game is not stable

c To write out the matrix from Steve's perspective, we need to multiply all the numbers by –1:

6 a A play-safe strategy maximises the worse possible outcome. This means that after considering the worse possible scenarios for each choice, the player chooses the best of them.

A should play 2 or 4 (row maximin –1) *B* should play 2 (column minimax -1)

b Since row maximin $=$ column minimax

 $-1 = -1$

game is stable

Saddle points are (A2, B2) and (A4, B2).

c Value of the game is –1 to A (if A plays 2 or 4 and B plays 2 the value of the game is –1).

7 a In a zero-sum game, one player's winnings are the other player's losses. This means that if player *A* wins *x*, then player *B* has to lose *x*, or, in other words, win –*x*. So the winnings of players *A* and *B* add up to 0, which is why we call this a zero-sum game.

C plays 2 (row maximin $= -1$)

D plays 3 (column minimax $= 2$)

c $-1 \neq 2$

row maximin \neq column minimax

so no stable solution

- **d** If both players play safe (see part **b**), the pay-off for Claire is 1.
- **e** Again, using the answer to part **b**, we determine that if both players play safe, the pay-off for David is –1. We can also use the fact that this is a zero-sum game: in part **d** we showed that the pay-off for Claire is 1, so the pay-off for David must be –1.

f

Decision Mathematics 2

- **8 a** A saddle point in a pay-off matrix is a value which is the smallest in its row and the largest in its column, and corresponds directly with stable solutions in two-person zero-sum games.
	- **b** A saddle point in a zero-sum pay-off matrix is the value which is both the smallest in its row and the largest in its column.

H plays 1 or 2

D plays 3 or 4

c row maximin = column minimax

 $0 = 0$

so game stable

saddle points (H1, D3) (H2, D3) (H1, D4) (H2, D4)

- **d** The value of the game to Hilary $= 0$
- **e** The value of the game to Denis $= 0$

f

9 a To see that this is a zero-sum game, think about each players winnings. Whatever the outcome, one player will pay the other one *x*, which means that she loses *x* and the other person wins *x*. Hence this is a zero-sum game.

9 b

c The row maximin is –1. The column minimax is 1. Since $-1 \neq 1$, this matrix has no saddle point and by the stable solution theorem we know that this means the game has no stable solution.

10 a The game has a stable solution, so the row maximin = column minimax. Currently the row minima are: 1, *x* or 5, 0. The column maxima are: 5, 3 or *x*. For the game to have a stable solution we need to consider what happens in the row and column containing *x*: If the row minimum is 5, then $x \ge 5$. The row maximin is then 5. Since $x \ge 5$, the column

minimax is also 5. So the game has a stable solution for all $x \ge 5$.

Let's now consider the situation when $x < 5$. For $x \ge 1$, the row maximin will be *x*. The column minimax is then *x* or 3, so for row maximin = column minimax we need $x \ge 3$.

Thus, for the game to have a stable solution we need $x \ge 3$.

(Note that if $x < 1$, the row maximin is 1 and this cannot be matched by the column minimax, which would be 3).

b We will follow the same two cases as in **a**. If $x \ge 5$, the value of the game is 5 (we determined that this was the column minimax and row maximin in part **a**). If, however, $5 > x \ge 3$, the value of the game will be *x* (again, refer back to part **a**).

Challenge

Assume a zero-sum game has multiple saddle points. Notation: let *xr,s* represent the entry in row *r*, column *s*. Now let's assume that two of the saddle points are $x_{a,b}$ and $x_{c,d}$. This means that $x_{a,b}$ is the smallest value in row *a* and the largest value in column *b*. Similarly, *xc,d* is the smallest value in row *c* and the largest value in column *d*. Now, consider the entry $x_{a,d}$. Since it is in row *a*, we must have $x_{a,d}$ $\geq x_{a,b}$. Similarly, since it is in column *d*, we must have $x_{c,d} \geq x_{a,d}$. From this we deduce $x_{c,d} \geq x_{a,b}$. Next, consider $x_{c,b}$. By the same reasoning, we have $x_{c,b} \ge x_{c,d}$ and $x_{a,b} \ge x_{c,b}$. Thus we deduce $x_{a,b} \ge x_{c,d}$ $x_{c,d}$. So we have $x_{c,d} \ge x_{a,b}$ and $x_{a,b} \ge x_{c,d}$, thus it must be $x_{a,b} = x_{c,d}$. So both saddle points have the same value. This reasoning can be applied to any pair of saddle points. Thus we conclude that all saddle points must be equal.