Game theory 6A

- 1 a In a zero-sum game the winnings of player *A* and player *B* add up to zero. This is not the case in this example; hence the game is not zero-sum.
 - **b** If player A plays 2 and player B plays 3, player A will win 1 and player B will win 2.
 - **c** To find the play-safe strategy, we need to find the worst outcomes for both *A* and *B*:

	B plays 1	B plays 2	B plays 3	Worst outcome for A
A plays 1	(2, 5)	(3, 1)	(2, 3)	2
A plays 2	(4, 1)	(3, 5)	(1, 2)	1
A plays 3	(3, 6)	(5, 4)	(7, 2)	3
A plays 4	(1, 4)	(5, 2)	(3, 4)	1
Best outcome for <i>B</i>	6	5	4	

The best worst (maximin) outcome for *A* is to play 3. Similarly, the worst best (minimax) outcome for *B* is to play 3. Hence the play-safe strategy for both players is to play 3.

- **2** a The play-safe strategy for the row player is the choice which corresponds to the row maximin. The play-safe strategy for the column player is the choice which corresponds to the row minimax.
 - **b** If *A* plays 2 and *B* plays 3, player *A* will win 7 and player *B*, since this is a zero-sum game, will win –7 (or lose 7).
 - **c** The minima of rows 1 3 are: –3, 4, –5 respectively. Hence the row maximin is 4. The maxima of columns 1 3 are: 6, 5, 8 respectively. Hence the column minimax is 5.
 - **d** Based on part **c**, the play-safe strategy for player *A* is to play 2. The play-safe strategy for *B* is to play 2.
 - e By the stable solution theorem we conclude that this game has no stable solution. This is because the row maximin (which is 4) \neq column minimax (which is 5).
- **3** a To find the play-safe strategy for each player, we need to find the row maximin and the column minimax. The minima of the rows are: −1, −4, −5 and −3. So the row maximin is −1 (row 1). The maxima of the columns are: 7, 6 and 8. So the column minimax is 6 (column 2). Thus the play-safe strategy for player *A* is to play 1, and for player *B* to play 2.
 - **b** If player *A* assumes that *B* plays safe, she can maximise her winnings if she plays 2.

	B plays 1	B plays 2	B plays 3	Row min	
A plays 1	3	2	3	2	\downarrow
A plays 2	-2	1	3	-2	
A plays 3	4	2	1	1	
Column max	4	2	3		
		\uparrow			

4 a

A should play 1 (row maximin = 2)

B should play 2 (column minimax = 2)

b row maximin = 2 =column minimax

 \therefore game is stable

- **c** The value of the game for player *A* is equal to the row maximin. Hence the value of the game for player *A* equals 2.
- **d** To rewrite the matrix from *B*'s point of view, we need to multiply all the numbers by -1:

	A plays 1	A plays 2	A plays 3
B plays 1	-3	2	-4
<i>B</i> plays 2	-2	-1	-2
<i>B</i> plays 3	-3	-3	-1

Now that we switched perspectives, the value of the game for player *B* can be determined by finding the row maximin (as in part c). Thus the value of the game for player *B* is -2.

5 a

	S plays 1	S plays 2	S plays 3	S plays 4	Row min	
R plays 1	-2	-1	-3	1	-3	
R plays 2	2	3	1	-2	-2	
R plays 3	1	1	-1	3	-1	←
Column max	2	3	1	3		
			\uparrow			

R should play 3 (row maximin = -1)

S should play 3 (column minimax = 1)

5 b row maximin \neq column minimax

-1 ≠ 1

so game is not stable

c To write out the matrix from Steve's perspective, we need to multiply all the numbers by -1:

	R plays 1	R plays 2	R plays 3
S plays 1	2	-2	-1
S plays 2	1	-3	-1
S plays 3	3	-1	1
S plays 4	-1	2	-3

6 a A play-safe strategy maximises the worse possible outcome. This means that after considering the worse possible scenarios for each choice, the player chooses the best of them.

	B plays 1	B plays 2	B plays 3	Row min	
A plays 1	-3	-2	2	-3	
A plays 2	-1	-1	3	-1	\downarrow
A plays 3	4	-3	1	-3	
A plays 4	3	-1	-1	-1	
Column max	4	-1	3		\leftarrow
		\uparrow			

A should play 2 or 4 (row maximin −1) B should play 2 (column minimax −1)

b Since row maximin = column minimax

$$-1 = -1$$

game is stable

Saddle points are (A2, B2) and (A4, B2).

c Value of the game is -1 to A (if A plays 2 or 4 and B plays 2 the value of the game is -1).

7 a In a zero-sum game, one player's winnings are the other player's losses. This means that if player A wins x, then player B has to lose x, or, in other words, win -x. So the winnings of players A and B add up to 0, which is why we call this a zero-sum game.

	D plays 1	D plays 2	D plays 3	D plays 4	Row min	
C plays 1	7	2	-3	5	-3	
C plays 2	4	-1	1	3	-1	←
C plays 3	-2	5	2	-1	-2	
C plays 4	3	-3	-4	2	-4	
Column max	7	5	2	5		
			\uparrow			

b

C plays 2 (row maximin = -1)

D plays 3 (column minimax = 2)

 \mathbf{c} $-1 \neq 2$

row maximin \neq column minimax so no stable solution

- **d** If both players play safe (see part **b**), the pay-off for Claire is 1.
- e Again, using the answer to part **b**, we determine that if both players play safe, the pay-off for David is −1. We can also use the fact that this is a zero-sum game: in part **d** we showed that the pay-off for Claire is 1, so the pay-off for David must be −1.

f

	C plays 1	C plays 2	C plays 3	C plays 4
D plays 1	-7	-4	2	-3
D plays 2	-2	1	-5	3
D plays 3	3	-1	-2	4
D plays 4	-5	-3	1	-2

Decision Mathematics 2

- **8** a A saddle point in a pay-off matrix is a value which is the smallest in its row and the largest in its column, and corresponds directly with stable solutions in two-person zero-sum games.
 - **b** A saddle point in a zero-sum pay-off matrix is the value which is both the smallest in its row and the largest in its column.

	D plays 1	D plays 2	D plays 3	D plays 4	D plays 5	Row min
H plays 1	2	1	0	0	2	$0 \leftarrow$
H plays 2	4	0	0	0	2	$^{0} \leftarrow$
H plays 3	1	4	-1	-1	3	-1
H plays 4	1	1	-1	-2	0	-2
H plays 5	0	-2	-3	-3	-1	-3
Column max	4	4	0	0	3	
			\uparrow	\uparrow		

H plays 1 or 2

D plays 3 or 4

c row maximin = column minimax

0 = 0

so game stable

saddle points (H1, D3) (H2, D3) (H1, D4) (H2, D4)

- **d** The value of the game to Hilary = 0
- **e** The value of the game to Denis = 0

f

	H plays 1	H plays 2	H plays 3	H plays 4	H plays 5
D plays 1	-2	-4	-1	-1	0
D plays 2	-1	0	-4	-1	2
D plays 3	0	0	1	1	3
D plays 4	0	0	1	2	3
D plays 5	-2	-2	-3	0	1

9 a To see that this is a zero-sum game, think about each players winnings. Whatever the outcome, one player will pay the other one x, which means that she loses x and the other person wins x. Hence this is a zero-sum game.

9 b

	B plays 1	B plays 2	B plays 3
A plays 1	-1	1	2
A plays 2	1	-2	1
A plays 3	2	1	-3

- **c** The row maximin is -1. The column minimax is 1. Since $-1 \neq 1$, this matrix has no saddle point and by the stable solution theorem we know that this means the game has no stable solution.
- **d** To write out the pay-off matrix for Beth, we need to multiply all numbers by -1:

	A plays 1	A plays 2	A plays 3
B plays 1	1	-1	-2
<i>B</i> plays 2	-1	2	-1
<i>B</i> plays 3	-2	-1	3

10 a The game has a stable solution, so the row maximin = column minimax. Currently the row minima are: 1, x or 5, 0. The column maxima are: 5, 3 or x. For the game to have a stable solution we need to consider what happens in the row and column containing x: If the row minimum is 5, then x > 5. The row maximin is then 5. Since x > 5, the column

If the row minimum is 5, then $x \ge 5$. The row maximin is then 5. Since $x \ge 5$, the column minimax is also 5. So the game has a stable solution for all $x \ge 5$.

Let's now consider the situation when x < 5. For $x \ge 1$, the row maximin will be x. The column minimax is then x or 3, so for row maximin = column minimax we need $x \ge 3$.

Thus, for the game to have a stable solution we need $x \ge 3$.

(Note that if x < 1, the row maximin is 1 and this cannot be matched by the column minimax, which would be 3).

b We will follow the same two cases as in **a**. If $x \ge 5$, the value of the game is 5 (we determined that this was the column minimax and row maximin in part **a**). If, however, $5 > x \ge 3$, the value of the game will be *x* (again, refer back to part **a**).

Challenge

Assume a zero-sum game has multiple saddle points. Notation: let $x_{r,s}$ represent the entry in row r, column s. Now let's assume that two of the saddle points are $x_{a,b}$ and $x_{c,d}$. This means that $x_{a,b}$ is the smallest value in row a and the largest value in column b. Similarly, $x_{c,d}$ is the smallest value in row c and the largest value in column d. Now, consider the entry $x_{a,d}$. Since it is in row a, we must have $x_{a,d} \ge x_{a,b}$. Similarly, since it is in column d, we must have $x_{c,d} \ge x_{a,d}$. From this we deduce $x_{c,d} \ge x_{a,b}$. Next, consider $x_{c,b}$. By the same reasoning, we have $x_{c,b} \ge x_{c,d}$ and $x_{a,b} \ge x_{c,b}$. Thus we deduce $x_{a,b} \ge x_{c,d}$. So we have $x_{c,d} \ge x_{a,b}$ and $x_{a,b} \ge x_{c,d}$, thus it must be $x_{a,b} = x_{c,d}$. So both saddle points have the same value. This reasoning can be applied to any pair of saddle points. Thus we conclude that all saddle points must be equal.