Allocation problems 2E

1 The initial cost matrix is shown below (with the numbers representing minutes):

	Task C	Task D	Task E
Worker L	37	15	12
Worker M	25	13	16
Worker N	32	41	35

The following linear programming problem can be formulated to minimise the total time taken.

Decision variables: Let $x_{ij} = \begin{cases} 1 \text{ if worker } i \text{ does task } j \\ 0 \text{ otherwise} \end{cases}$

where $i \in \{L, M, N\}$ and $j \in \{C, D, E\}$

Objective function: To minimise the total time (in minutes) taken *P*.

Minimise $P = 37x_{LC} + 15x_{LD} + 12x_{LE}$ + $25x_{MC} + 13x_{MD} + 16x_{ME}$ + $32x_{NC} + 41x_{ND} + 35x_{NE}$

Subject to the following constraints:

Each worker can be assigned to at most one task:

$x_{LC} + x_{LD} + x_{LE} = 1$	or	$\sum x_{Lj} = 1$
$x_{MC} + x_{MD} + x_{ME} = 1$	or	$\sum x_{Mj} = 1$
$x_{NC} + x_{ND} + x_{NE} = 1$	or	$\sum x_{Nj} = 1$

Each task must be done by just one worker:

$x_{LC} + x_{MC} + x_{NC} = 1$	or	$\sum x_{iC} = 1$
$x_{LD} + x_{MD} + x_{ND} = 1$	or	$\sum x_{iD} = 1$
$x_{LE} + x_{ME} + x_{NE} = 1$	or	$\sum x_{iE} = 1$

2 The initial cost matrix is shown below (with the numbers representing hundreds of pounds):

	Task S	Task T	Task U	Task V
Worker C	36	34	32	35
Worker D	37	32	34	33
Worker E	42	35	37	36
Worker F	39	34	35	35

The following linear programming problem can be formulated to minimise the total training cost.

Decision variables:

Let $x_{ij} = \begin{cases} 1 \text{ if worker } i \text{ is trained in task } j \\ 0 \text{ otherwise} \end{cases}$

where $i \in \{C, D, E, F\}$ and $j \in \{S, T, U, V\}$

Objective function:

To minimise the total training cost (in hundreds of pounds) P.

Minimise $P = 36x_{CS} + 34x_{CT} + 32x_{CU} + 35x_{CV}$ + $37x_{DS} + 32x_{DT} + 34x_{DU} + 33x_{DV}$ + $42x_{ES} + 35x_{ET} + 37x_{EU} + 36x_{EV}$ + $39x_{FS} + 34x_{FT} + 35x_{FU} + 35x_{FV}$

Subject to the following constraints:

Each worker is to be trained in exactly one task:

$x_{CS} + x_{CT} + x_{CU} + x_{CV} = 1$ or	$\sum x_{Cj} = 1$
$x_{DS} + x_{DT} + x_{DU} + x_{DV} = 1$ or	$\sum x_{Dj} = 1$
$x_{ES} + x_{ET} + x_{EU} + x_{EV} = 1$ or	$\sum x_{Ej} = 1$
$x_{FS} + x_{FT} + x_{FU} + x_{FV} = 1$ or	$\sum x_{Fj} = 1$

Each task must have one worker trained to carry it out:

$x_{CS} + x_{DS} + x_{ES} + x_{FS} = 1$	or	$\sum x_{iS} = 1$
$x_{CT} + x_{DT} + x_{ET} + x_{FT} = 1$	or	$\sum x_{iT} = 1$
$x_{CU} + x_{DU} + x_{EU} + x_{FU} = 1$	or	$\sum x_{iU} = 1$
$x_{CV} + x_{DV} + x_{EV} + x_{FV} = 1$	or	$\sum x_{iV} = 1$

3 The initial cost matrix is shown below (with the figures representing the number of names and addresses):

	1	2	3
A	11	15	-
B	14	18	17
С	16	13	23
D	15	14	22

Replacing the '-' entry with a large value of 1000 gives:

	1	2	3
A	11	15	1000
B	14	18	17
С	16	13	23
D	15	14	22

The following linear programming problem can be formulated to maximise the number of names and addresses collected.

Decision variables:

Let $x_{ij} = \begin{cases} 1 \text{ if worker } i \text{ is assigned to site } j \\ 0 \text{ otherwise} \end{cases}$ where $i \in \{A, B, C, D\}$ and $j \in \{1, 2, 3\}$

Objective function:

To maximise the number of names and addresses collected P.

Maximise $P = 11x_{A1} + 15x_{A2}$ + $14x_{B1} + 18x_{B2} + 17x_{B3}$ + $16x_{C1} + 13x_{C2} + 23x_{C3}$ + $15x_{D1} + 14x_{D2} + 22x_{D3}$

Subject to the following constraints:

Each worker must be assigned to just one site:

$x_{A1} + x_{A2} + x_{A3} = 1$	or	$\sum x_{Aj} = 1$
$x_{B1} + x_{B2} + x_{B3} = 1$	or	$\sum x_{Bj} = 1$
$x_{C1} + x_{C2} + x_{C3} = 1$	or	$\sum x_{Cj} = 1$
$x_{D1} + x_{D2} + x_{D3} = 1$	or	$\sum x_{Dj} = 1$

Each site must be assigned to just one worker:

$x_{A1} + x_{B1} + x_{C1} + x_{D1} = 1$	or	$\sum x_{i1} = 1$
$x_{A2} + x_{B2} + x_{C2} + x_{D2} = 1$	or	$\sum x_{i2} = 1$
$x_{A3} + x_{B3} + x_{C3} + x_{D3} = 1$	or	$\sum x_{i3} = 1$

4 a The initial cost matrix is shown below (with the numbers representing $\pounds 100s$):

	W	X	Y	Z
A	12	8	11	9
B	14	10	9	13
C	11	9	12	10
D	13	11	10	12

As the table above is an *n* by *n* matrix (with n = 4), we do not need to add any additional dummy rows or columns.

To maximise the profit, subtract every number from the largest value in the table.

b The largest value in the table is 14. Subtracting every value from 14 the table becomes:

	W	X	Y	Ζ
A	2	6	3	5
B	0	4	5	1
C	3	5	2	4
D	1	3	4	2

The smallest numbers in rows 1, 2, 3 and 4 are 2, 0, 2 and 1. We reduce rows first by subtracting these numbers from each element in the row. The table becomes:

	W	X	Y	Ζ
A	0	4	1	3
B	0	4	5	1
C	1	3	0	2
D	0	2	3	1

The smallest numbers in columns 1, 2, 3 and 4 are 0, 2, 0 and 1. We reduce columns by subtracting these numbers from each element in the column. Therefore, the reduced cost matrix is:

	W	X	Y	Z
A	0	2	1	2
B	0	2	5	0
С	1	1	0	1
D	0	0	3	0

We can cover all the zeros with four lines, so we have found our optimal solution of:

A - W(12) B - Z(13) C - Y(12)D - X(11)

Maximum profit = $100 \times (12 + 13 + 12 + 11) = 100 \times 48 = \text{\pounds}4800$

4 c Using the initial cost matrix below the following linear programming problem can be formulated to maximise the amount of profit made.

	W	X	Y	Z
A	12	8	11	9
B	14	10	9	13
С	11	9	12	10
D	13	11	10	12

Decision variables:

Let $x_{ij} = \begin{cases} 1 \text{ if worker } i \text{ does task } j \\ 0 \text{ otherwise} \end{cases}$

where $i \in \{A, B, C, D\}$ and $j \in \{W, X, Y, Z\}$

Objective function: To maximise the total profit (in $\pounds 100s$) *P*.

Maximise $P = 12x_{AW} + 8x_{AX} + 11x_{AY} + 9x_{AZ}$ + $14x_{BW} + 10x_{BX} + 9x_{BY} + 13x_{BZ}$ + $11x_{CW} + 9x_{CX} + 12x_{CY} + 10x_{CZ}$ + $13x_{DW} + 11x_{DX} + 10x_{DY} + 12x_{DZ}$

Subject to the following constraints:

Each worker can be assigned to at most one task:

$x_{AW} + x_{AX} + x_{AY} + x_{AZ} = 1$	or	$\sum x_{Aj} = 1$
$x_{BW} + x_{BX} + x_{BY} + x_{BZ} = 1$	or	$\sum x_{Bj} = 1$
$x_{CW} + x_{CX} + x_{CY} + x_{CZ} = 1$	or	$\sum x_{Cj} = 1$
$x_{DW} + x_{DX} + x_{DY} + x_{DZ} = 1$	or	$\sum x_{Dj} = 1$

Each task must be done by just one worker:

$x_{AW} + x_{BW} + x_{CW} + x_{DW} = 1$	or	$\sum x_{iW} = 1$
$x_{AX} + x_{BX} + x_{CX} + x_{DX} = 1$	or	$\sum x_{iX} = 1$
$x_{AY} + x_{BY} + x_{CY} + x_{DY} = 1$	or	$\sum x_{iY} = 1$
$x_{AZ} + x_{BZ} + x_{CZ} + x_{DZ} = 1$	or	$\sum x_{iZ} = 1$

Alternatively, the linear programming problem on the next page shows the problem formulated as a minimisation problem using the modified cost matrix found in part b.

4 c (continued)

Modified cost matrix from part b:

	W	X	Y	Z
A	2	6	3	5
B	0	4	5	1
С	3	5	2	4
D	1	3	4	2

Decision variables:

Let $x_{ij} = \begin{cases} 1 \text{ if worker } i \text{ does task } j \\ 0 \text{ otherwise} \end{cases}$

where $i \in \{A, B, C, D\}$ and $j \in \{W, X, Y, Z\}$

Objective:

To minimise the objective function *P*.

Minimise $P = 2x_{AW} + 6x_{AX} + 3x_{AY} + 5x_{AZ}$ + $4x_{BX} + 5x_{BY} + x_{BZ}$ + $3x_{CW} + 5x_{CX} + 2x_{CY} + 4x_{CZ}$ + $x_{DW} + 3x_{DX} + 4x_{DY} + 2x_{DZ}$

Subject to the following constraints:

Each worker can be assigned to at most one task:

or	$\sum x_{Aj} = 1$
or	$\sum x_{Bj} = 1$
or	$\sum x_{Cj} = 1$
or	$\sum x_{Dj} = 1$
	or or or or

Each task must be done by just one worker:

$x_{AW} + x_{BW} + x_{CW} + x_{DW} = 1$	or	$\sum x_{iW} = 1$
$x_{AX} + x_{BX} + x_{CX} + x_{DX} = 1$	or	$\sum x_{iX} = 1$
$x_{AY} + x_{BY} + x_{CY} + x_{DY} = 1$	or	$\sum x_{iY} = 1$
$x_{AZ} + x_{BZ} + x_{CZ} + x_{DZ} = 1$	or	$\sum x_{iZ} = 1$