Dynamics 5C

1 a $v^2 = \omega^2 (a^2 - x^2)$ $a = 0.5, \quad x = 0 \quad c = 2$ $2^2 = \omega^2 \times 0.5^2$ $\omega = \frac{2}{0.5} = 4$ period $= \frac{2\pi}{\omega} = \frac{2\pi}{4} = \frac{\pi}{2}$ The period is $\frac{\pi}{2}$ s.

b
$$x = 0.2 \text{ m}$$
 $v^2 = 4^2 (0.5^2 - 0.2^2)$
 $v = 1.833...$

When OP = 0.2 m the speed of P is 1.83 m s⁻¹ (3 s.f.)

The amplitude is 5 m.

3 b Using (1) $10 = a\omega$

$$10 = 5\omega$$
$$\omega = 2$$
period = $\frac{2\pi}{\omega} = \pi$

The period is π s.

4 period =
$$\frac{2\pi}{\omega} = \frac{3\pi}{5}$$

 $\omega = \frac{10}{3}$
 $v^2 = \omega^2 (a^2 - x^2)$
 $v^2 = \left(\frac{10}{3}\right)^2 (0.4^2 - 0)$
 $v = \frac{10}{3} \times 0.4 = \frac{4}{3}$

The maximum speed is
$$\frac{4}{3}$$
 m s⁻¹.

5
$$\ddot{x} = -\omega^2 x$$

 $\ddot{x} = 15 \text{ m s}^{-2}, x = a$
 $15 = \omega^2 a$ (1)
 $v^2 = \omega^2 (a^2 - x^2)$
 $v = 18 \text{ m s}^{-1}, x = 0$ $18^2 = \omega^2 a^2$ (2)
(2) ÷ (1) $\frac{18^2}{15} = \frac{\omega^2 a^2}{\omega^2 a}$
 $a = \frac{18^2}{15} = 21.6$
Using (2) $a\omega = 18$
 $\omega = \frac{18}{21.6} = 0.8333...$
 $v^2 = \omega^2 (a^2 - x^2)$
 $v^2 = 0.833...^2 (21.6^2 - 2.5^2)$

The speed is 17.9 m s^{$$-1$$} (3 s.f.)

v = 17.87...

Maximum speed occurs when x = 0.

First find *a* and ω (see question 3.)

Further Mechanics 2

SolutionBank

The maximum speed is 1.00 m s^{-1} (3 s.f.).

b
$$v^2 = 1(1.004^2 - 0.4^2)$$

 $v = 0.9219...$

The speed is $0.922 \text{ m s}^{-1}(3 \text{ s.f.})$.

10 $a = \frac{2.5}{2} = 1.25$		
$Period = \frac{2\pi}{\omega} = \frac{60}{30} = 2$	<	$\begin{array}{c} 30 \text{ oscillations per minute} \Rightarrow \\ 2s \text{ for 1 oscillation} \end{array}$
$\omega = \pi$		
$v_{\rm max} = a\omega$		
$=1.25 \times \pi$		
maximum K.E. = $\frac{1}{2}mv_{\text{max}}^2$		
$=\frac{1}{2}\times1.2\times1.25^2\times\pi^2$		
= 9.252		
The maximum K.E. is 9.25J (3s.f.).		

11 a
$$a = 0.8 \div 2 = 0.4 \text{ m}$$

period $= \frac{2\pi}{\omega} = 2$
 $\omega = \pi$
 $v^2 = \omega^2 (a^2 - x^2)$
 $x = 0$ $v = \omega a$
 $v = \pi \times 0.4$
 $v = 1.256...$

The maximum speed is 1.26 m s^{-1} (3 s.f.).

b 0.6 m from highest point

$\Rightarrow x = -0.2 \mathrm{m}$	The buoy is now below the centre.
$x = a \cos \omega t$	You want the time from the highest point.
$-0.2 = 0.4 \cos \pi t$	
$\cos \pi t = -0.5$	
$t = \frac{1}{\pi} \cos^{-1} \left(-0.5 \right)$	
$t = \frac{1}{\pi} \times \left(\pi - \frac{\pi}{3}\right)$	
$t = \frac{2}{3}$	
The buoy takes $\frac{2}{3}$ s to fall 0.6 m.	

Г

12

$$\begin{array}{c} \hline 0 & 0.2 \text{ m} & A & 0.1 \text{ m} & B \\
period = \frac{2\pi}{\omega} = 2 \\
\therefore \omega = \pi \\
x = a \sin \omega t \\
x = 0.5 \sin \pi t \\
x = 0.2 \text{ m} & 0.2 = 0.5 \sin \pi t_1 \\
\pi t_1 = \sin^{-1} \left(\frac{0.2}{0.5}\right) = \sin^{-1} \left(\frac{2}{5}\right) \\
x = 0.3 & \pi t_2 = \sin^{-1} \left(\frac{3}{5}\right) \\
\text{time } A \rightarrow B = t_2 - t_1 \\
= \frac{1}{\pi} \left(\sin^{-1} \left(\frac{3}{5}\right) - \sin^{-1} \left(\frac{2}{5}\right)\right) \\
= 0.07384... \\
\text{The time to move directly from A to B is 0.0738 s (3 s.f.).}$$
13 a $x = 4 \sin 2t$
 $\dot{x} = 8 \cos 2t$

$$\begin{array}{c}
\text{Differential the given} \\
\text{equation twice.}
\end{array}$$

 $\ddot{x} = -16 \sin 2t$ $\ddot{x} = -4(4\sin 2t)$ $\ddot{x} = -4x$ ∴ S.H.M.

Compare $x = 4 \sin 2t$ **b** amplitude = 4 mwith $x = a \sin \omega t$ to period $=\frac{2\pi}{2}=\pi s$ obtain *a* and *w*. •

c

$$v^{2} = \omega^{2}(a^{2} - x^{2})$$
$$x = 0 \qquad v^{2} = 4(4^{2} - 0)$$
$$v = 8$$

The maximum speed is 8 m s⁻¹.

d
$$x = 4\sin 2t$$

 $\dot{x} = 8\cos 2t$
From **a**.
 $\dot{x} = 4 \text{ m s}^{-1}$
 $4 = 8\cos 2t$
 $\cos 2t = 0.5$
 $t = \frac{1}{2}\cos^{-1} 0.5$
 $t = \frac{1}{2} \times \frac{\pi}{3}$
The least value of t is $\frac{\pi}{6}$.

Compare with $x = a \sin(\omega t + \varepsilon)$

to obtain a and a.

13 e $x = 4 \sin 2t$ x = 2 $2 = 4 \sin 2t$ $\sin 2t = 0.5$ $t = \frac{1}{2} \sin^{-1} 0.5$ $t = \frac{1}{2} \times \frac{\pi}{6}$ The least value of t is $\frac{\pi}{12}$. 14 a $x = 3 \sin \left(4t + \frac{1}{2}\right)$ $\dot{x} = 12 \cos \left(4t + \frac{1}{2}\right)$ $\ddot{x} = -48 \sin \left(4t + \frac{1}{2}\right)$

$$\ddot{x} = -16x$$
$$\therefore \text{ S.H.M.}$$

b amplitude = 3 m period = $\frac{2\pi}{\omega} = \frac{2\pi}{4} = \frac{\pi}{2}$ s

c t = 0 $x = 3\sin\left(\frac{1}{2}\right)$ = 1.438...

When t = 0, x = 1.44 (3 s.f.)

d
$$x = 0$$
 $0 = 3\sin\left(4t + \frac{1}{2}\right)$
 $\sin\left(4t + \frac{1}{2}\right) = 0$
 $4t + \frac{1}{2} = 0, \pi, ...$
 $4t = \left(0 - \frac{1}{2}\right), \left(\pi - \frac{1}{2}\right), ...$
 $t = -\frac{1}{8}$ (not applicable)
 $t = \frac{1}{4}\left(\pi - \frac{1}{2}\right) = 0.6603...$

The value of *t* is 0.660 (3 s.f.).

Further Mechanics 2

SolutionBank

 \therefore Ship must leave by 8.39 pm (nearest minute).

Use the symmetry of S.H.M. to find the time required.

$16 \overrightarrow{A} 0.4 \text{ m} \overrightarrow{O} 0.5 \text{ m} \overrightarrow{B}$		
period = $\frac{2\pi}{\omega} = 4$		
$\omega = \frac{\pi}{2}$ $x = a \sin \omega t$ $x = 0.75 \sin \frac{\pi}{2} t$	◄	Find the time taken from <i>O</i> to <i>B</i> (using $x = 0.5$ m) and from <i>O</i> to the point where $x = 0.4$ m.
$x = 0.5m$ $0.5 = 0.75\sin\frac{\pi}{2}t$ $\sin\frac{\pi t}{2} = \frac{0.5}{0.75}$		
$2 = \frac{0.75}{t}$ $t = \frac{2}{\pi} \sin^{-1} \left(\frac{0.5}{0.75} \right)$		
$x = 0.4 \mathrm{m}$ $t = \frac{2}{\pi} \sin^{-1} \left(\frac{0.4}{0.75} \right)$		
Time $B \to A$		
$=\frac{2}{\pi}\left[\sin^{-1}\left(\frac{0.5}{0.75}\right)+\sin^{-1}\left(\frac{0.4}{0.75}\right)\right]$	4	Adding these times will give the time to go directly from <i>B</i> to <i>A</i> due to the symmetry of S.H.M.
= 0.8226		

P takes 0.823s to travel directly from B to A (3 s.f.)

Challenge

$$\begin{aligned} \ddot{x} &= -\omega^2 x \qquad v^2 = \omega^2 \left(a^2 - x^2\right) \\ v_1^2 &= \omega^2 \left(a^2 - x_1^2\right) \quad (\mathbf{1}) \\ v_2^2 &= \omega^2 \left(a^2 - x_2^2\right) \quad (\mathbf{2}) \\ (\mathbf{2}) &- (\mathbf{1}): v_2^2 - v_1^2 = \omega^2 \left(a^2 - x_2^2\right) - \omega^2 \left(a^2 - x_1^2\right) \\ v_2^2 - v_1^2 &= \omega^2 \left(a^2 - x_2^2 - a^2 + x_1^2\right) \end{aligned}$$

Rearranging gives $\omega^2 = \frac{v_2^2 - v_1^2}{x_1^2 - x_2^2}$ so $\omega^2 = \left(\frac{v_2^2 - v_1^2}{x_1^2 - x_2^2}\right)^{\frac{1}{2}} T = \frac{2\pi}{\omega} = 2\pi \left(\frac{x_1^2 - x_2^2}{v_2^2 - v_1^2}\right)^{\frac{1}{2}}$