Conic Sections 1 2D

b Solving $xy = 12$ and $y = -3x + 15$ simultaneously:

$$
x(-3x+15) = 12
$$

\n
$$
-3x^2 + 15x = 12
$$

\n
$$
x^2 - 5x + 4 = 0
$$

\n
$$
(x-4)(x-1) = 0
$$

\nSo $x=1 \Rightarrow y=\frac{12}{1} = 12$
\nor $x=4 \Rightarrow y=\frac{12}{4} = 3$
\nSo the coordinates are
\n $P(1, 12)$ and $Q(4, 3)$

c The midpoint of *PQ* is given by

 $\left(\frac{1+4}{2}, \frac{12+3}{2}\right) = M\left(\frac{5}{2}, \frac{15}{2}\right)$ $M\left(\frac{1+4}{2},\frac{12+3}{2}\right) = M\left(\frac{5}{2},\frac{15}{2}\right)$ The gradient of *PQ* is $\frac{12-3}{1} = \frac{9}{2} = -3$ $1 - 4 - 3$ $\frac{-3}{4} = \frac{9}{4} = -$ − − The gradient of the perpendicular bisector of *PQ* is therefore

$$
\frac{-1}{(-3)} = \frac{1}{3}
$$

The equation of the bisector is therefore

$$
y - \frac{15}{2} = \frac{1}{3} \left(x - \frac{5}{2} \right)
$$

$$
y - \frac{15}{2} = \frac{x}{3} - \frac{5}{6}
$$

So
$$
y = \frac{x}{3} + \frac{20}{3}
$$

1 d Solving $xy = 12$ and $y = \frac{x}{3} + \frac{20}{3}$ $y = \frac{x}{2} + \frac{20}{3}$ simultaneously:

$$
x\left(\frac{x}{3} + \frac{20}{3}\right) = 12
$$

$$
x^2 + 20x = 36
$$

$$
x^2 + 20x - 36 = 0
$$

Using the quadratic formula:
\n
$$
x = \frac{-20 \pm \sqrt{20^2 - 4 \times 1 \times (-36)}}{2}
$$
\n
$$
x = \frac{-20 \pm \sqrt{544}}{2}
$$
\n
$$
x = \frac{-20 \pm 4\sqrt{34}}{2} = -10 \pm 2\sqrt{34}
$$

2 a Solving $xy = 9$ and $y = x$ simultaneously:

 $x^2 = 9$

So $x = 3$ and $y = 3$ (point *Q*) or $x = -3$ and $y = -3$ (point *P*)

- **2 b** Solving $3x y + 6 = 0$ and $xy = 9$ simultaneously:
	- $3x \frac{9}{x} + 6 = 0$ *x* $-\frac{9}{-} + 6 = 0 +$

$$
3x2 + 6x - 9 = 0
$$

x² + 2x - 3 = 0
(x-1)(x+3) = 0

x = −3 at point *P*.

Therefore at *S*, $x = 1$ and $y = 9$ So *S* has coordinates $S(1, 9)$

Solving $x - 3y - 6 = 0$ and $xy = 9$ simultaneously:

$$
x-3\left(\frac{9}{x}\right)-6=0
$$

$$
x^2-6x-27=0
$$

$$
(x-9)(x+3)=0
$$

x = −3 at point *P*.

Therefore at *T*, $x = 9$ and $y = 1$ So *T* has coordinates $T(9,1)$

Therefore $ST = \sqrt{(9-1)^2 + (1-9)^2}$ $=\sqrt{128} = 8\sqrt{2}$

c The midpoint of *ST* is

$$
M\left(\frac{1+9}{2},\frac{9+1}{2}\right) = M(5,5)
$$

Therefore *M* lies on the line $y = x$

3 $x = 6t$ and $y = \frac{6}{5}$ *t* $=\frac{0}{x}$, so $xy = 36$ Solving $xy = 36$ and $3x + 4y + 48 = 0$ simultaneously gives: $(x+4)(x+12) = 0$ $3x^2 + 48x + 144 = 0$ $x^2 + 16x + 48 = 0$ $3x+4\left(\frac{36}{2}\right)+48=0$ *x* $+4\left(\frac{36}{x}\right)+48=$ When $x = -4$ then $y = \frac{36}{1} = -9$ 4 $y = \frac{36}{4} = -$ − When $x = -12$ then $y = \frac{36}{12} = -3$ 12 $y = \frac{36}{12} = -$ −

Solving $xy = 36$ and $4x - 3y - 11 = 0$ simultaneously gives:

$$
4x-3\left(\frac{36}{x}\right)-11=0
$$

$$
4x^2-11x-108=0
$$

Using the quadratic formula:

$$
x = \frac{11 \pm \sqrt{(-11)^2 - 4 \times 4 \times (-108)}}{8}
$$

= $\frac{11 \pm 43}{8}$
When $x = -4$ then $y = -9$ (point *Q*)
When $x = \frac{27}{4}$ then $y = \frac{16}{3}$ (point *R*)

Both the lines $3x + 4y + 48 = 0$ and $4x - 3y - 11 = 0$ intersect the parabola $xy = 36$ at the point $(-4, -9)$, so *Q* is the point $(-4, -9)$

Hence, *P* is (-12, -3) and *R* is
$$
\left(\frac{27}{4}, \frac{16}{3}\right)
$$

There are two approaches you can take to find the area of triangle *PQR:*

3 continued

Method 1: Using Area
$$
=\frac{1}{2}ab\sin C
$$

\n
$$
|PR| = \sqrt{\left(\frac{27}{4} + 12\right)^2 + \left(\frac{16}{3} + 3\right)^2} = \frac{25}{12}\sqrt{97}
$$
\n
$$
|QR| = \sqrt{\left(\frac{27}{4} + 4\right)^2 + \left(\frac{16}{3} + 9\right)^2} = \frac{215}{12}
$$
\n
$$
|PQ| = \sqrt{(-12 + 4)^2 + (-3 + 9)^2} = 10
$$

Cosine rule:
$$
\cos PRQ = \frac{|PR|^2 + |QR|^2 - |PQ|^2}{2|PR||QR|}
$$

\n
$$
= \frac{\frac{60625}{144} + \frac{46225}{144} - 100}{2(\frac{25\sqrt{97}}{12})(\frac{215}{12})}
$$
\n
$$
PRQ = 29.167^{\circ}
$$
\nArea = $= \frac{1}{2} |PR||QR|\sin PRQ$
\n
$$
= \frac{1}{2} (\frac{25\sqrt{97}}{12})(\frac{215}{12})\sin(29.167)
$$

89.6 units =

Method 2: Geometrical approach

Area
$$
= \left(18\frac{3}{4} \times 14\frac{1}{3}\right) - \frac{1}{2} \left(18\frac{3}{4} \times 8\frac{1}{3}\right)
$$

$$
-\frac{1}{2} (6 \times 8) - \frac{1}{2} \left(10\frac{3}{4} \times 14\frac{1}{3}\right)
$$

$$
= \left(\frac{75}{4} \times \frac{43}{3}\right) - \frac{1}{2} \left(\frac{75}{4} \times \frac{25}{3}\right)
$$

$$
-24 - \frac{1}{2} \left(\frac{43}{4} \times \frac{43}{3}\right)
$$

$$
= \frac{3225}{12} - \frac{1}{2} \left(\frac{1875}{12}\right)
$$

$$
-24 - \frac{1}{2} \left(\frac{1849}{12}\right)
$$

$$
= \frac{3225}{12} - \frac{1875}{24} - 24 - \frac{1849}{24}
$$

$$
= \frac{6450}{24} - \frac{1875}{24} - \frac{576}{24} - \frac{1849}{24}
$$

$$
= \frac{2150}{24}
$$

$$
= \frac{1075}{12}
$$

4
$$
P\left(cp, \frac{c}{p}\right)
$$
 and $Q\left(cq, \frac{c}{q}\right)$
\nThe gradient of PQ is
\n
$$
m_{PQ} = \frac{\frac{c}{q} - \frac{c}{p}}{cq - cp}
$$
\n
$$
= \frac{\frac{1}{q} - \frac{1}{p}}{q - p}
$$
\n
$$
= \frac{\frac{p - q}{pq}}{pq(q - p)}
$$
\n
$$
= \frac{- (q - p)}{pq(q - p)}
$$
\n
$$
= \frac{-(q - p)}{pq(q - p)}
$$

$$
=\frac{1}{pq(q-1)}
$$

$$
=-\frac{1}{pq}
$$

The equation of the line *PQ* is therefore

$$
\frac{y - \frac{c}{p}}{x - cp} = -\frac{1}{pq}
$$

$$
pq\left(y - \frac{c}{p}\right) = -(x - cp)
$$

$$
pqy - cq = cp - x
$$

$$
x + pqy = cp + cq
$$

So $x + pqy = c(p + q)$ as required.

Further Pure Mathematics 1

SolutionBank

- **5** Solving $y^2 = 4ax$ (1) and $xy = c^2$ (2) simultaneously: From **(2)**, 2 a^4 2 2 c^2 ₂ c^4 $y = \frac{c}{x} \Rightarrow y^2$ $x \rightarrow x^2$ $=\frac{c}{2} \Rightarrow y^2 = \frac{c}{2}$ Substituting into equation **(1):** $(4a)^{\frac{1}{3}}$ $\frac{4}{3}$ $(4a)^{\frac{1}{3}}$ 4 $\frac{c^4}{r^2} = 4ax$ $c^4 = 4ax^3$ $3c^4$ 4 *x* $x^3 = \frac{c}{4}$ *a* $x = \frac{c}{a}$ *a* = = = Therefore **(2)** \Rightarrow $(4a)^{\frac{1}{3}}$ $y = (4a)^{\frac{1}{3}} c^{\frac{2}{3}}$ $\frac{4}{3}$ $y = \frac{c^2}{2} = c^2 \times \frac{(4a)}{4}$ *x c* $=-\epsilon^2 \times$
	- Therefore *C* and *H* intersect exactly once, and the point of intersection is
	- $(4a)^{\frac{1}{3}}$ $(4a)^{\frac{1}{3}}$ $\frac{4}{3}, \frac{1}{3}, (4a)^{\frac{1}{3}}c^{\frac{2}{3}}$ 4 $\frac{c^{\frac{3}{3}}}{2}$, $(4a)^{\frac{1}{3}}c^{\frac{2}{3}}$ *a* $\left(\frac{c^{\frac{4}{3}}}{\sqrt{1-\frac{1}{3}}}\right)^{\frac{1}{3}}c^{\frac{2}{3}}\right)^{\frac{1}{3}}$ $(4a)^{3}$)
- **6** $xy = c^2$
- At *P*, 2 $x = \frac{c}{2}$, so $\frac{cy}{2} = c^2$ 2 $\frac{cy}{2} = c^2$ Hence $2c^2$ 2 *c* $y = \frac{2c}{c} = 2c$ *c* $=\frac{2c}{c}$ = 2c So the coordinates of *P* are $P\left(\frac{c}{2}, 2c\right)$ At Q , $x = -4c$, so $-4cy = c^2$ Hence 2 $4c$ 4 c^2 *c y c* $=$ $\frac{c}{1}$ $=$ $\frac{1}{-4c} = -\frac{1}{4}$ So the coordinates of *Q* are $Q\left(-4c, -\frac{c}{4}\right)$ Therefore length *PQ*

$$
= \sqrt{\left(\frac{c}{2} - (-4c)\right)^2 + \left(2c - \left(-\frac{c}{4}\right)\right)^2}
$$

$$
= \sqrt{\left(\frac{9c}{2}\right)^2 + \left(\frac{9c}{4}\right)^2}
$$

$$
= \sqrt{\frac{81c^2}{4} + \frac{81c^2}{16}}
$$

405 c^2 $c\sqrt{405}$ 9 $\sqrt{5}$ 16 4 4 $=\sqrt{\frac{405c^2}{16}} = \frac{c\sqrt{405}}{16} = \frac{9\sqrt{5}c}{16}$ **7 a** Substitute $x = 9t$ and $y = \frac{9}{5}$ *t* $= 9t$ and $y = \frac{9}{5}$ in the equation $4x - 3y + 69 = 0$ $4(9t)-3\left(\frac{9}{5}\right)+69=0$ $36t^2 + 69t - 27 = 0$ $12t^2 + 23t - 9 = 0$ $36t - \frac{27}{1} + 69 = 0$ *t t* $-3\left(\frac{9}{t}\right) + 69 =$ $-\frac{27}{-} + 69 =$ **b** $12t^2 + 23t - 9 = 0$ $(4t+9)(3t-1) = 0$ When $t = -\frac{9}{1} \Rightarrow x = -\frac{81}{1}$ 4 4 $t = -\frac{9}{4} \Rightarrow x = -\frac{61}{4}$ and $y = -4$ When $t = \frac{1}{2}$ \Rightarrow $x = 3$ 3 $t = \frac{1}{2}$ \Rightarrow $x = 3$ and $y = 27$ Therefore the required points are $\left(-\frac{81}{4}, -4 \right)$ and $\left(3, 27 \right)$

8 a
$$
x = 12t
$$
 and $y = \frac{12}{t}$, so $xy = 144$

b When $t = \frac{1}{2}$, then $x = 6$ and $y = 24$, so the coordinate of *P* is $P(6, 24)$

When $t = 6$, then $x = 72$ and $y = 2$, so the coordinate of *Q* is $Q(72, 2)$

$$
|PQ| = \sqrt{(72 - 6)^2 + (2 - 24)^2}
$$

= $\sqrt{66^2 + 22^2}$
= $\sqrt{4840}$
= $22\sqrt{10}$

Further Pure Mathematics 1

8 c *PQ* has midpoint

$$
M\left(\frac{6+72}{2},\frac{24+2}{2}\right) = M(39,13)
$$

 The gradient of *PQ* is $2 - 24$ 22 1 $72 - 6$ 66 3 $\frac{-24}{2} = -\frac{22}{15} = -$ −

 The gradient of the perpendicular bisector of *PQ* is therefore 3

 The equation of the perpendicular bisector of *PQ* is therefore:

$$
\frac{y-13}{x-39} = 3
$$

y-13 = 3(x-39)
y-13 = 3x-117
y = 3x-104

9 a Solving $xy = 8$ and $x + 2y - 10 = 0$ simultaneously:

$$
x+2\left(\frac{8}{x}\right)-10=0
$$

$$
x^2-10x+16=0
$$

$$
(x-2)(x-8)=0
$$

$$
x=2 \Rightarrow y=
$$

$$
x=8 \Rightarrow y=
$$

 Therefore the required coordinates are $P(2, 4)$ and $Q(8,1)$

2 4 1

As shown in the diagram,

 Area R = (Area of triangle *PQS*) + (Area of rectangle *T*) $-(Area under xy = 8 between$ $x = 8$ and $x = 2$)

$$
R = \left(\frac{1}{2} \times 3 \times 6\right) + (6 \times 1) - \int_{2}^{8} \frac{8}{x} dx
$$

= 15 - 8\left[\ln x\right]_{2}^{8}
= 15 - (8 \ln 8 - 8 \ln 2)
= 15 - 8 \ln 4

Challenge

C is a hyperbola of the form $xy = c^2$ rotated through an angle 45 anticlockwise about the origin.

The transformation matrix required is:

$$
\begin{pmatrix}\n\cos 45^\circ & -\sin 45^\circ \\
\sin 45^\circ & \cos 45^\circ\n\end{pmatrix} = \begin{pmatrix}\n\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\n\end{pmatrix}
$$

Applying this to a general point on the

hyperbola $\int cp \frac{c}{r}$ *p* $\begin{pmatrix} c \end{pmatrix}$ $\left(\textit{cp}, \frac{\epsilon}{p}\right)$:

$$
\begin{pmatrix}\n\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\n\end{pmatrix}\n\begin{pmatrix}\ncp \\
\frac{c}{p}\n\end{pmatrix} = \n\begin{pmatrix}\n\frac{cp}{\sqrt{2}} - \frac{c}{p\sqrt{2}} \\
\frac{cp}{\sqrt{2}} + \frac{c}{p\sqrt{2}}\n\end{pmatrix}
$$

$$
x^{2} = \left(\frac{cp}{\sqrt{2}} - \frac{c}{p\sqrt{2}}\right)^{2} = \frac{c^{2}p^{2}}{2} - c^{2} + \frac{c^{2}}{2p^{2}}
$$

$$
y^{2} = \left(\frac{cp}{\sqrt{2}} + \frac{c}{p\sqrt{2}}\right)^{2} = \frac{c^{2}p^{2}}{2} + c^{2} + \frac{c^{2}}{2p^{2}}
$$

So $y^2 - x^2 = 2c^2$

So $k^2 = 2c^2$ and $k = c\sqrt{2}$