Elastic collisions in one dimension 4D

1 a First collision (between A and B)
Using conservation of linear momentum for the system (\rightarrow) :

$$
\begin{align*}
& 2 \times 5+1 \times 1=2 u+v \\
& \Rightarrow 2 u+v=11 \tag{1}
\end{align*}
$$

Using Newton's law of restitution:

$$
\begin{align*}
& e=\frac{1}{2}=\frac{v-u}{5-1} \\
& \Rightarrow v-u=2 \tag{2}
\end{align*}
$$

Subtracting equation (2) from equation (1) gives:
$3 u=9 \Rightarrow u=3$

Substituting into equation (1) gives:
$6+v=11 \Rightarrow v=5$
[This result can be checked in equation (2)]

Second collision (between B and C)
Using conservation of linear momentum for the system (\rightarrow) :

$$
\begin{equation*}
1 \times 5+2 \times 4=x+2 y \tag{3}
\end{equation*}
$$

$\Rightarrow x+2 y=13$
Using Newton's law of restitution:
$e=\frac{1}{2}=\frac{y-x}{5-4}$
$\Rightarrow y-x=\frac{1}{2}$
Adding equations (3) and (4) gives:
$3 y=\frac{27}{2} \Rightarrow y=\frac{9}{2}=4.5$
Substituting into equation (4) gives:
$4.5-x=\frac{1}{2} \Rightarrow x=4$
Solution: $u=3, v=5, x=4, y=4.5$

1 b First collision (between A and B)
Using conservation of linear momentum for the system (\rightarrow) :
$1.5 \times 10+2 \times(-2)=1.5 u+2 v$
$\Rightarrow 1.5 u+2 v=11$

Using Newton's law of restitution:
$e=\frac{1}{6}=\frac{v-u}{10+2}=\frac{v-u}{12}$
$\Rightarrow v-u=2$

Adding equation (1) to $1.5 \times$ equation (2) gives:
$3.5 v=14 \Rightarrow v=4$
Substituting into equation (2) gives:
$4-u=2 \Rightarrow u=2$
[This result can be checked in equation (1)]

Second collision (between B and C)
Using conservation of linear momentum for the system (\rightarrow) :

$$
\begin{align*}
& 2 \times 4+1 \times 3=2 x+y \\
& \Rightarrow 2 x+y=11 \tag{3}
\end{align*}
$$

Using Newton's law of restitution:

$$
\begin{align*}
& e=\frac{1}{2}=\frac{y-x}{4-3} \\
& \Rightarrow y-x=\frac{1}{2} \tag{4}
\end{align*}
$$

Subtracting equation (4) from equation (3) gives:
$3 x=\frac{21}{2} \Rightarrow x=\frac{7}{2}=3.5$
Substituting into equation (4) gives:

$$
y-3.5=\frac{1}{2} \Rightarrow y=4
$$

Solution: $u=2, v=4, x=3.5, y=4$

After the first impact

Using conservation of linear momentum for the system (\rightarrow) :
$3 m \times 6=3 m u+5 m v$
$\Rightarrow 3 u+5 v=18$

Perfectly elastic means $\mathrm{e}=1$. So using Newton's law of restitution:
$e=1=\frac{v-u}{6}$
$\Rightarrow v-u=6$
Adding equation (1) to $3 \times$ equation (2) gives:
$8 v=36 \Rightarrow v=4.5$
Substituting into equation (2) gives:
$4.5-u=6 \Rightarrow u=-1.5$

Before the second impact

Using conservation of linear momentum for the system (\rightarrow) :
$5 m \times 4.5=5 m x+4 m y$
$\Rightarrow 5 x+4 y=22.5$
Using Newton's law of restitution:
$e=1=\frac{y-x}{4.5}$
$\Rightarrow y-x=4.5$

Adding equation (3) to $5 \times$ equation (4) gives:
$9 y=22.5+22.5=45 \Rightarrow y=5$
Substituting into equation (4) gives:
$5-x=4.5 \Rightarrow x=0.5$
Solution: $A-1.5 \mathrm{~m} \mathrm{~s}^{-1}, B 0.5 \mathrm{~m} \mathrm{~s}^{-1}, C 5 \mathrm{~m} \mathrm{~s}^{-1}$

3 a

Before the first impact

$B(m)$

At rest
$C(m)$
$A(m)$

After the first impact

$B(m)$
At rest

$C(m)$

Using conservation of linear momentum for the system (\rightarrow) :
$u=w+x \Rightarrow w+x=u$
Using Newton's law of restitution:
$e=\frac{x-w}{u}$
$\Rightarrow x-w=e u$
(2)

Adding equation (1) to equation (2) gives:
$2 x=e u+u \Rightarrow x=0.5 u(e+1)$
Substituting into equation (2) gives:
$0.5 u(e+1)-w=e u \Rightarrow w=0.5 u(1-e)$

Before the second impact

A (m)

$B(m)$

$C(m)$

After the second impact

$A(m)$

$B(m)$

$C(m)$

Using conservation of linear momentum for the system (\rightarrow) :

$$
\begin{align*}
& 0.5 u(e+1)=y+z \\
& \Rightarrow y+z=0.5 u(e+1) \tag{3}
\end{align*}
$$

Using Newton's law of restitution:

$$
\begin{align*}
& e=\frac{z-y}{0.5 u(e+1)} \\
& \Rightarrow z-y=0.5 u e(e+1) \tag{4}
\end{align*}
$$

Adding equation (3) to equation (4) gives:

$$
\begin{aligned}
& 2 z=0.5 u(e+1)+0.5 e u(e+1) \\
& \Rightarrow z=0.25 u(e+1)(1+e)=0.25 u(1+e)^{2}
\end{aligned}
$$

Substituting into equation (4) gives:

$$
\begin{aligned}
& 0.25 u(1+e)^{2}-y=0.5 e u(e+1) \\
& \Rightarrow y=u(1+e)(0.25+0.25 e-0.5 e)=0.25 u(1+e)(1-e)
\end{aligned}
$$

Solution: $0.5 u(1-e), 0.25 u(1+e)(1-e), 0.25 u(1+e)^{2}$

3 b A will catch up with B provided that
$0.5 u(1-e)>0.25 u(1+e)(1-e)$, i.e. provided that $2>1+e$
Since $e<1$ this condition holds and A will catch up with B resulting in a further collision.
4 a

Before the first collision

$B(m)$

$C(m)$
A (m)
After the first collision

$B(m)$

$C(m)$

Using conservation of linear momentum for the system (\rightarrow) :

$$
\begin{align*}
& 4 u-2 u=v+w \\
& \Rightarrow v+w=2 u \tag{1}
\end{align*}
$$

Using Newton's law of restitution:

$$
\begin{align*}
& e=\frac{w-v}{4 u+2 u} \\
& \Rightarrow w-v=6 e u \tag{2}
\end{align*}
$$

Adding equations (1) and (2) gives:
$2 w=2 u+6 u e$
$\Rightarrow w=u(1+3 e)$
B will collide with C if the speed of B after collision with A is greater than the speed of C, i.e. if $w>3 u$. This will occur if:
$u(1+3 e)>3 u$
$3 e>2 \Rightarrow e>\frac{2}{3}$
b Subtracting equation (2) from equation (1) gives:
$2 v=2 u-6 e u$
$v=u(1-3 e)$
If $e>\frac{2}{3}$ then $v<0$, and the direction of A is reversed by the collision with B.

Using conservation of linear momentum for the system (\rightarrow) :
$2 m \times 4 u+3 m \times(-2 u)=2 m v+3 m u$
$2 u=2 v+3 u \Rightarrow v=-0.5 u$
Use this result to find the coefficient of restitution between particles P and Q.
$e=\frac{u-v}{4 u+2 u}=\frac{1.5 u}{6 u}=0.25$
The second collision is between Q and the wall.
Q rebounds from the wall with velocity $\frac{2}{3} u$, as the coefficient of restitution between Q and the wall is $\frac{2}{3}$.

Second collision between P and Q

$Q(3 m)$

After second collision

$P(2 m)$

$Q(3 m)$

Using conservation of linear momentum for the system (\leftarrow) :
$2 m \times \frac{1}{2} u+3 m \times \frac{2}{3} u=2 x+3 y$
$\Rightarrow 2 x+3 y=3 u$

Using Newton's law of restitution:
$e=\frac{1}{4}=\frac{x-y}{\frac{2}{3} u-\frac{1}{2} u}$
$\Rightarrow x-y=\frac{1}{4} \times \frac{1}{6} u=\frac{u}{24}$
Adding equation (1) to $3 \times$ equation (2) gives:
$5 x=3 u+\frac{u}{8}=\frac{25 u}{8} \Rightarrow x=\frac{5 u}{8}$
Substituting into equation (2) gives:
$\frac{5 u}{8}-y=\frac{u}{24} \Rightarrow y=\frac{15 u-u}{24}=\frac{14 u}{24}=\frac{7 u}{12}$

6 a

Using conservation of linear momentum for the system (\rightarrow) :
$m \times 12 u=m v+3 m w$
$\Rightarrow v+3 w=12 u$

Using Newton's law of restitution:

$$
\begin{equation*}
e=\frac{2}{3}=\frac{w-v}{12 u} \tag{2}
\end{equation*}
$$

$\Rightarrow w-v=8 u$
Adding equation (1) to equation (2) gives:
$4 w=20 u \Rightarrow w=5 u$
Substituting into equation (2) gives:
$5 u-v=8 u \Rightarrow v=-3 u$
After the collision the speed of P is $3 u$ and its direction is reversed, and the speed of Q is $5 u$.
b Q then hits a wall and rebounds with speed $\frac{4}{5} \times 5 u=4 u$

Second collision between P and Q

$P(m)$

$Q(3 m)$

After second collision

$P(m)$

$Q(3 m)$

Using conservation of linear momentum for the system (\leftarrow) :
$3 m u+12 m u=m x+3 m y \Rightarrow 3 y+x=15 u$
Using Newton's law of restitution:
$e=\frac{2}{3}=\frac{x-y}{4 u-3 u} \Rightarrow 3 x-3 y=2 u$
Adding equation (1) to equation (2) gives:
$4 x=17 u \Rightarrow x=\frac{17 u}{4}$
Substituting into equation (4) gives:
$\frac{51 u}{4}-3 y=2 u \Rightarrow y=\frac{43 u}{12}$

7 a i Use $v^{2}=u^{2}+2 a s$ downwards with $u=0, s=0.4$ and $a=g=9.8$ to find the speed of approach for the first bounce:

$$
\begin{aligned}
& v^{2}=2 g \times 0.4=7.84 \\
& v=2.8 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

Newton's law of restitution gives speed of rebound from floor as $0.7 \times 2.8=1.96 \mathrm{~m} \mathrm{~s}^{-1}$
Use $v^{2}=u^{2}+2 a s$ upwards with $v=0, u=1.96$ and $a=-g$ to find the height of the first bounce:

$$
\begin{aligned}
& 0=1.96^{2}-2 g s \\
& s=\frac{1.96^{2}}{19.6}=0.196=19.6 \mathrm{~cm}
\end{aligned}
$$

ii Use $v^{2}=u^{2}+2 a s$ downwards with $u=0, s=0.196$ and $a=g=9.8$ to find the speed of approach for the second bounce:

$$
v^{2}=2 g \times 0.196=3.8416
$$

$$
v=1.96 \mathrm{~ms}^{-1} \quad[\text { This result can also be directly deduced }]
$$

Following second collision with floor, the ball rebounds with speed $0.7 \times 1.96=1.372 \mathrm{~m} \mathrm{~s}^{-1}$
Use $v^{2}=u^{2}+2 a s$ upwards with $v=0, u=1.372$ and $a=-g$

$$
\begin{aligned}
& 0=1.96^{2}-2 g s \\
& s=\frac{1.372^{2}}{19.6}=0.09604=9.604 \mathrm{~cm}
\end{aligned}
$$

b The ball continues to bounce (for an infinite amount of time) with its height decreasing by a common ratio each time.
c Ratio of heights of successive bounces is $\frac{9.604}{19.6}=0.49$
Total distance travelled $=0.4+(2 \times 0.196+2 \times 0.196 \times 0.49+2 \times 0.196 \times 0.49 \times 0.49 \ldots)$

$$
\begin{aligned}
& =0.4+\frac{2 \times 0.196}{1-0.49} \quad \text { (using the sum of an infinite geometric series) } \\
& =1.17 \mathrm{~m}(3 \text { s.f. })
\end{aligned}
$$

d The ball loses energy following every bounce, so an infinite number of bounces would be unrealistic.

8 a Use $v^{2}=u^{2}+2 a s$ downwards with $u=0, s=H$ and $a=g$

$$
v^{2}=2 g H \Rightarrow v=\sqrt{2 g H}
$$

Newton's law of restitution gives speed of separation from plane as $e \sqrt{2 g H}$
Let the height to which the ball rebounds after the first bounce be h_{1}
Use $v^{2}=u^{2}+2 a s$ upwards with $v=0, u=e \sqrt{2 g H}, a=-g$ and $s=h_{1}$
$0=2 g H e^{2}-2 g h_{1}$
$\Rightarrow h_{1}=e^{2} H$
b Let the height to which the ball rebounds after the second bounce be h_{2}
Before the second bounce, the ball drops from a height h_{1}
So using the result from part a, $h_{2}=e^{2} h_{1}$
So $h_{2}=e^{2} h_{1}=e^{2}\left(e^{2} H\right)=e^{4} H$
c Let the total distance travelled by the ball be d, then

$$
\begin{aligned}
d & =H+2 h_{1}+2 h_{2}+\ldots \\
& =H+2 e^{2} H+2 e^{4} H+\ldots \\
& =H+2 e^{2} H\left(1+e^{2}+e^{4}+\ldots\right)
\end{aligned}
$$

$2 e^{2} H\left(1+e^{2}+e^{4}+\ldots\right)$ is an infinite geometric series with first term $a=2 e^{2} H$ and common ratio $r=e^{2}$, so

$$
S_{\infty}=\frac{a}{1-r}=\frac{2 e^{2} H}{1-e^{2}}
$$

Therefore

$$
\begin{aligned}
d & =H+2 e^{2} H\left(1+e^{2}+e^{4}+\ldots\right)=H+\frac{2 e^{2} H}{1-e^{2}} \\
& =\frac{H\left(1-e^{2}\right)+2 e^{2} H}{1-e^{2}}=\frac{H+e^{2} H}{1-e^{2}} \\
& =\frac{H\left(1+e^{2}\right)}{1-e^{2}}
\end{aligned}
$$

9

Initial position

$$
B(m)
$$

From $O \rightarrow W_{2}, B$ travels at a speed of $2 \mathrm{~m} \mathrm{~s}^{-1}$ through a distance $\frac{d}{2} \mathrm{~m}$.
So the time taken is $\frac{\text { distance }}{\text { speed }}=\frac{\frac{d}{2}}{2}=\frac{d}{4}$
B then rebounds with speed $2 e_{2} \mathrm{~ms}^{-1}$.
From $W_{2} \rightarrow W_{1}, B$ travels at a speed of $2 e_{2} \mathrm{~m} \mathrm{~s}^{-1}$ through a distance $d \mathrm{~m}$.
So the time taken is $\frac{\text { distance }}{\text { speed }}=\frac{d}{2 e_{2}}$
B then rebounds with speed $2 e_{2} e_{1} \mathrm{~ms}^{-1}$.
From $W_{1} \rightarrow W_{2}, B$ travels at a speed of $2 e_{2} e_{1} \mathrm{~m} \mathrm{~s}^{-1}$ through a distance $d \mathrm{~m}$.
So the time taken is $\frac{\text { distance }}{\text { speed }}=\frac{d}{2 e_{2} e_{1}}$
Therefore, the total time taken is $\frac{d}{4}+\frac{d}{2 e_{2}}+\frac{d}{2 e_{2} e_{1}}=\frac{d}{2}\left(\frac{1}{2}+\frac{1}{e_{1}}+\frac{1}{e_{1} e_{2}}\right)$ seconds.

Challenge

Consider the initial collision of particles P and Q :

Before first collision

After first collision

$P(m)$

$Q(m)$

Using conservation of linear momentum for the system (\rightarrow) :
$2 m-m=m v_{1}+m v_{2}$
$\Rightarrow v_{1}+v_{2}=1$
Using Newton's law of restitution:
$e=0.5=\frac{v_{2}-v_{1}}{2-(-1)}=\frac{v_{2}-v_{1}}{3}$
$\Rightarrow v_{2}-v_{1}=1.5$
Adding equations (1) and (2) gives:
$2 v_{2}=2.5 \Rightarrow v_{2}=1.25 \mathrm{~ms}^{-1}$
Substituting into equation (1) gives:
$1.25-v_{1}=1.5 \Rightarrow v_{1}=-0.25 \mathrm{~m} \mathrm{~s}^{-1}$

After first collision

As P travels from O to W_{1}, the time taken is $\frac{\text { distance }}{\text { speed }}=\frac{2}{0.25}=8 \mathrm{~s}$
As Q travels from O to W_{2}, the time taken is $\frac{\text { distance }}{\text { speed }}=\frac{2}{1.25}=1.6 \mathrm{~s}$
Q rebounds with speed $1.25 \times 0.4=0.5 \mathrm{~ms}^{-1} 1.25 \times 0.4=0.5 \mathrm{~m} \mathrm{~s}^{-1}$.
Now let t be the time of the second collision, and suppose both particles collide at a distance d from W_{2}

Challenge continued

Then for particle $P: \quad d=2+0.25 t$
And for particle $Q: \quad d=0.5(t-1.6)$
So $2+0.25 t=0.5(t-1.6)$
$0.25 t=2+0.8=2.8$
$t=11.2$ seconds
But it only takes 8 seconds for P to travel to W_{1}, so P will hit W_{1} before colliding with Q for a second time.

Therefore P hits W_{1} before colliding with Q for a second time.

