Algorithms 1F

1 a $\frac{600}{300} = 2$ $0.14 \times 2^3 = 1.12$ seconds It would take approximately 1.12 seconds to multiply 600×600 matrices.

b
$$\frac{1000}{300} = 3\frac{1}{3}$$

 $0.14 \times 3\frac{1}{3}^{3} = 5.19$ seconds

It would take approximately 5.19 seconds to multiply 1000×1000 matrices.

- 2 a To pack the k^{th} item requires at most k-1 comparisons, if every item placed so far is in a separate bin. Hence the total number of comparisons for *n* items is $\sum_{k=1}^{n} (k-1) = \frac{1}{2}n(n-1)$ which is a quadratic expression.
 - **b** $\frac{6200}{400} = 15.5$ $0.72 \times (15.5)^2 = 173$ seconds (3 s.f.)
 - c The exact run-time will depend on the specific lengths of pipe.
- 3 a If the size of the problem is multiplied by k, then the algorithm will take approximately k^2 times as long to run.
 - **b** $\frac{500}{50} = 10$ $0.028 \times (10)^2 = 2.8$ seconds
- 4 If the runtime of bubble sort is $an^2 + bn + c$ and the runtime of first-fit bin-packing is $pn^2 + qn + r$ then the combined runtime will $be(an^2 + bn + c) + (pn^2 + qn + r) = (a + p)n^2 + (b + p)n + (c + r)$ which is a quadratic expression, so the combined process has quadratic (n^2) order, not (n^4)
- **5** The bubble sort (n^2) is applied to a list of n^2 items which gives the order of the algorithm as n^4