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Probability generating functions 7D 
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2 a 
  
G

X
(t) =

1

4
(1+ t)2 = (0.5)2(1+ t)2 = (0.5+ 0.5t)2 = (1− 0.5+ 0.5t)2

 

  This the standard probability generating function for the binomial distribution,  

with p = 0.5 and n = 2, so 
  X ~ B(2,0.5) 

  
  
G

Y
(t) =

1

25
(1+ t)2 = (0.2)2(2+ 3)2 = (0.4+ 0.6t)2 = (1− 0.6 + 0.6t)2

 

  This the standard probability generating function for the binomial distribution,  

with p = 0.6 and n = 2, so 
  X ~ B(2,0.6)  

 

 b 
  
Z = X +Y ,   G

Z
(t) = G
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2 c ( )2 31
G
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Z t t t t  

  

  

E(Z ) = ′G
Z
(1) =

1

100
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6
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=
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5
= E(Z )

  

 

3 a Using the standard formula for the probability generating function of a Poisson distribution, 

  
  
G

X
(t) = e1.3(t–1)

 and 
2.4( 1)G ( ) e t

Y t −=  

 

 b By independence, G ( ) G ( )G ( )Z X Yt t t=   

  So 
1.3( 1) 2.4( 1)G ( ) e et t

Z t − −=  
  
⇒G

Z
(t) = e3.7(t−1)

 

 

 c 
  
′G
Z
(t) = 3.7e3.7(t−1)

 

  
  
E(Z ) = ′G

Z
(1) = 3.7  

  Similarly, 
  
′G
X

(t) = 1.3e1.3(t−1)  and ′G
Y
(t) = 2.4e2.4(t−1)

 

  
  
So  E( X )+ E(Y ) = ′G

X
(1) + ′G

Y
(1) = 1.3+ 2.4 = 3.7 = E(Z ) 

 

4 a Let the random variable X denote the number of rolls of a fair six-sided dice until a five is thrown, 

so ( )1~ Geo
6

X  

  From the properties of a geometric distribution 
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=
t
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1− 5
6
t
=

t

6− 5t
        (using the formula for the sum of a convergent geometric series)

  

 

 b Let the random variable Y denote the number of rolls of a fair ten-sided dice until two fives have 

been thrown, so   Y ~ Negative B(2,0.1)  

  Using the standard formula for the probability generating function of a negative binomial 
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 c 
  
Z = X +Y ,  G
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4 d Rewrite 
  
G

Z
(t) = t

3(6−5t)−1(10 − 9t)−2
 and differentiate using the product rule, 
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′G
Z
(1) = 3+ (−1)(−5)+ (−2)(−9) = 3+5+18 = 26 

 

  Alternatively, find 
  
′G
X

(1) and ′G
Y
(1)  and add the results using the fact that 

  E(Z ) = E( X )+ E(Y )   

    

 

5 a 
3G ( ) (1 2 )X t k t= +  

  G (1) 1X = , so 
3(1 2) 1k + =  

  That is 27 1k = , hence 
  
k =

1

27
 

 

 b P( 2)X =  is the coefficient of 2t  in G ( )X t , expanding G ( )X t gives 
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X

t k t k t t t k t t t  

  So 
  
P( X = 2) = 12k =

12

27
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4
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 c Using chain rule gives 
  
′G
X

(t) = 6k(1+ 2t)2
 

  So 
  
E( X ) = ′G

X
(1) =

6
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= 2  

  
  
′′G
X
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X
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3
  

  
  
Hence, Var( X ) = ′′G

X
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3
 

 

 d 
  
E(Y ) = ′G

Y
(1) and 
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4
 hence 
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6 a 

  

G
Z
(t) = G

X
(t)G

Y
(t) =

4t

(3− t)2(3− 2t)3
 

 

 b 
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X
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X
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6 c 
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7 a Let the random variables Y and Z denote the number of prizes won by Adrian and Chloe 

respectively from their 5 scratch cards, so 
  Y ~ B(5,0.3) and  Z ~ B(5,0.4) 

  

  

G
Y
(t) = (1− 0.3+ 0.3t)5 = (0.7 + 0.3t)5

G
Z
(t) = (1− 0.4 + 0.4t)5 = (0.6 + 0.4t)5

As the games are independent

G
X
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Y
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 b 
  
′G
X

(t) = 5(0.3)(0.7 + 0.3t)4(0.6 + 0.4t)5 +5(0.4)(0.7 + 0.3t)5(0.6 + 0.4t)4
  

  
  
E( X ) = ′G

X
(1) = 5(0.3)+5(0.4) = 1.5+ 2.0 = 3.5 
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9 a Coefficients in the generating function must sum to 1, so 
  

1

6
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6
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2
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′G
X

(t) =
1

6
+

1

3
t + 3kt2 =

1

6
+

1

3
t + 2t2

 

  
  
E( X ) = ′G
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+
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9 c 
  
P( X = 1) =

1

6
, P( X = 2) =

1

6
, P( X = 3) =

2

3
 

  So Y has the following probabilities: 

  
  
P(Y = 1) =

1

6
, P(Y = 3) =

1

6
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2
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  Hence the probability generating function of Y is  
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 d 
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2
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6
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  2E( X )−1= 2× 2.5−1= 4 = E(Y )  
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2 a Let the random variable X denote the number of shots Holly needs to hit her first bullseye, so 

  X ~ Geo(0.6) 

  Using the standard formula 
0.6 0.6 3

G ( )
1 (1 0.6) 1 0.4 5 2

X

t t t
t

t t t
= = =

− − − −
 

 

 b Let the random variable Y denote the number of shots Holly needs to hit two bullseyes, so 

  Y ~ Negative B(2,0.6)  

  Using the standard formula ( )
2 2 2

20.6 0.6 3
G ( ) G ( )

1 (1 0.6) 1 0.4 5 2
Y X

t t t
t t

t t t

     = = = =     − − − −    
 

 

 c Let the random variable Z denote the number of shots Holly needs to hit four bullseyes, so 

  Z ~ Negative B(4,0.6) 

  Using the standard formula ( )
4 4 4
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t t t

     = = = =     − − − −    
 


