Chi-squared tests Mixed exercise 6

- 1 P(Y < y) = 1 P(Y > y)So $P(Y < y) = 0.99 \Rightarrow P(Y > y) = 0.01$ $\chi^{2}_{10}(1\%) = 23.209$, so $P(\chi^{2}_{10} > 23.209) = 0.01 \Rightarrow y = 23.209$
- 2 $\chi_8^2(5\%) = 15.507$, so $P(\chi_8^2 > 15.507) = 0.05 \Longrightarrow x = 15.507$
- 3 Degrees of freedom = $(5-1) \times (3-1) = 8$ From the tables: $\chi_8^2(5\%) = 15.507$ Critical region is $\chi^2 > 15.507$
- 4 Amalgamation gives a 3×4 contingency table. Degrees of freedom = $(4-1) \times (3-1) = 6$ Critical value is $\chi_6^2(5\%) = 12.592$
- 5 H_0 : There is no association between catching a cold and taking the new drug. H_1 : There is an association between catching a cold and taking the new drug.

These are the observed frequencies (O_i) with totals for each row and column:

	Cold	No cold	Total
Drug	34	66	100
Dummy pill	45	55	100
Total	79	121	200

Calculate the expected frequencies (E_i) for each cell. For example:

Expected frequency 'Cold' and 'Taken drug' = $\frac{100 \times 79}{200}$ = 39.5 The expected frequency and test statistic (X²) calculations are:

<i>O</i> _i	E _i	$\frac{(\boldsymbol{O}_i - \boldsymbol{E}_i)^2}{\boldsymbol{E}_i}$
34	39.5	0.766
66	60.5	0.5
45	39.5	0.766
55	60.5	0.5

$$X^{2} = \sum \frac{(O_{i} - E_{i})^{2}}{E_{i}} = 2.53$$

The number of degrees of freedom v = (2-1)(2-1) = 1; from the tables: $\chi_1^2(5\%) = 3.841$

As 2.53 is less than 3.841, there is insufficient evidence to reject H_0 at the 5% level. It appears taking the new drug doesn't affect the chance of a person catching a cold.

6 H_0 : The data can be modelled by a Poisson distribution. H_1 : The data cannot be modelled by Poisson distribution.

Total frequency = 38 + 32 + 10 = 80Mean = $\lambda = \frac{1 \times 32 + 2 \times 10}{80} = \frac{52}{80} = 0.65$

Calculate the expected frequencies as follows:

$$E_0 = 80 \times P(X = 0) = 80 \times \frac{e^{-0.65} \ 0.65^0}{0!} = 41.764$$
$$E_1 = 80 \times P(X = 1) = 80 \times \frac{e^{-0.65} \ 0.65^1}{1!} = 27.146$$
$$E_2 = 80 \times P(X = 2) = 80 \times \frac{e^{-0.65} \ 0.65^2}{2!} = 8.823$$
$$E_{i>2} = 80 - (41.764 + 27.146 + 8.823) = 2.267$$

To get values for *E* greater than 5, combine the last two cells:

Number of breakdowns	0	1	≥ 2	Total
Observed (O _i)	38	32	10	80
Expected (<i>E_i</i>)	41.764	27.146	11.090	80
$\frac{(\boldsymbol{O}_i - \boldsymbol{E}_i)^2}{\boldsymbol{E}_i}$	0.339	0.868	0.107	1.314

The number of degrees of freedom $\nu = 1$ (three data cells with two constraints as λ is estimated by calculation)

From the tables: $\chi_1^2(5\%) = 3.841$

As 1.314 is less than 3.841, there is insufficient evidence to reject H_0 at the 5% level. The data may be modelled by a Poisson distribution.

7 H_0 : There is no association between gender and passing a driving test at the first attempt. H_1 : There is an association between gender and passing a driving test at the first attempt.

These are the observed frequencies (O_i) with totals for each row and column:

	Pass	Fail	Total
Male	23	27	50
Female	32	18	50
Total	55	45	100

The expected frequency and test statistic (X^2) calculations are:

<i>Oi</i>	E_i	$\frac{(\boldsymbol{O}_i - \boldsymbol{E}_i)^2}{\boldsymbol{E}_i}$
23	27.5	0.736
27	22.5	0.9
32	27.5	0.736
18	22.5	0.9

$$X^{2} = \sum \frac{(O_{i} - E_{i})^{2}}{E_{i}} = 3.272$$

The number of degrees of freedom v = (2-1)(2-1) = 1; from the tables: $\chi_1^2(10\%) = 2.705$

As 3.27 is greater than 2.705, reject H_0 at the 10% level. Conclude there is evidence of an association between gender and passing a driving test at the first attempt.

- **8** a We would expect each box to have an equal chance of being opened, and so would expect each box to have been opened 20 times.
 - **b** H₀: The data can be modelled by a discrete uniform distribution.H₁: The data cannot be modelled by a discrete uniform distribution.

The observed and expected results are:

Box number	1	2	3	4	5
Observed (O _i)	20	16	25	18	21
Expected (E_i)	20	20	20	20	20
$\frac{(\boldsymbol{O}_i - \boldsymbol{E}_i)^2}{\boldsymbol{E}_i}$	0	0.8	1.25	0.2	0.05

$$X^{2} = \sum \frac{(O_{i} - E_{i})^{2}}{E_{i}} = 2.3$$

Degrees of freedom v = 4 (five data cells with a single constraint); from the tables: $\chi^2_4(5\%) = 9.488$

As 2.3 is less than 9.488, there is insufficient evidence to reject H_0 at the 5% level. The data may be modelled by a discrete uniform distribution.

Further Statistics 1

9 a Total number of dead flies = $0 \times 1 + 1 \times 1 + 2 \times 5 + 3 \times 11 + 4 \times 24 + 5 \times 8 = 180$ Total number of flies sprayed = $50 \times 5 = 250$

So P(fly dies when sprayed) = $\frac{180}{250} = 0.72$

b H_0 : A B(5, 0.72) distribution is a suitable model for the data. H_1 : The data cannot be modelled by a B(5, 0.72) distribution.

Find the expected frequencies by multiplying the total frequency 50 samples by the probability P(X = i) using the probability equation for a binomial random variable.

$$E_{0} = 50 \times P(X = 0) = 50 \times {\binom{5}{0}} \times 0.72^{0} \times 0.28^{5} = 0.086$$
$$E_{1} = 50 \times P(X = 1) = 50 \times {\binom{5}{1}} \times 0.72^{1} \times 0.28^{4} = 1.1064$$
$$E_{2} = 50 \times P(X = 2) = 50 \times {\binom{5}{2}} \times 0.72^{2} \times 0.28^{3} = 5.6900$$

Combine to get all *E* values to be 5 or more

Similarly $E_3 = 14.6313$, $E_4 = 18.8117$, $E_5 = 9.6746$

Number of dead flies	≤ 2	3	4	5	Total
Observed (O _i)	7	11	24	8	50
Expected (<i>E_i</i>)	6.8825	14.6313	18.8117	9.6476	50
$\frac{(\boldsymbol{O}_i - \boldsymbol{E}_i)^2}{\boldsymbol{E}_i}$	0.0020	0.9012	1.4309	0.2905	2.62

After combining the relevant cells, this gives:

The number of degrees of freedom v = 2 (four data cells with two constraints as *p* is estimated by calculation)

From the tables: $\chi_2^2(5\%) = 5.991$

As 2.62 is less than 5.991, there is insufficient evidence to reject H_0 at the 5% level. The distribution B(5, 0.72) may be a suitable model for the data.

10 H_0 : The data can be modelled by a Poisson distribution.

H₁: The data cannot be modelled by Poisson distribution.

Total frequency = 112 + 56 + 40 = 208Mean = $\lambda = \frac{1 \times 56 + 2 \times 40}{208} = \frac{136}{208} = 0.654$ (3 d.p.)

Calculate the expected frequencies as follows:

$$E_0 = 208 \times P(X = 0) = 208 \times \frac{e^{-0.654} \ 0.654^0}{0!} = 108.152$$

$$E_1 = 208 \times P(X = 1) = 208 \times \frac{e^{-0.654} \ 0.654^1}{1!} = 70.731$$

$$E_2 = 208 \times P(X = 2) = 208 \times \frac{e^{-0.654} \ 0.654^2}{2!} = 23.129$$

$$E_{i>2} = 208 - (108.152 + 70.731 + 23.129) = 5.988$$

This gives all *E* values of 5 or more:

Number of accidents	0	1	2	≥ 3	Total
Observed (<i>O_i</i>)	112	56	40	0	208
Expected (<i>E_i</i>)	108.152	70.731	23.129	5.988	208
$\frac{(\boldsymbol{O}_i - \boldsymbol{E}_i)^2}{\boldsymbol{E}_i}$	0.1369	3.0680	12.2062	5.988	21.499

Degrees of freedom $\nu = 2$ (four data cells with two constraints as λ is estimated by calculation) From the tables: $\chi_2^2(5\%) = 5.991$

As 21.5 is greater than 5.991, reject H_0 at the 5% level. This suggests that the data cannot be modelled by Po(0.654)

11 H₀: Rocks in site *B* occur with the same distribution as seen in the sample from site *A* H₁: Rocks in site *B* do not occur with the same distribution as seen in the sample from site *A*

In the sample from site A, Igneous : Sedimentary : Other = 6 : 11 : 3Applying this to the total 60 stones collected in site B to obtain expected values:

Rock type	Igneous	Sedimentary	Other	Total
Observed (<i>O_i</i>)	10	35	15	60
Expected (E_i)	18	33	9	60
$\frac{(\boldsymbol{O}_i - \boldsymbol{E}_i)^2}{\boldsymbol{E}_i}$	3.556	0.121	4	7.677

Degrees of freedom v = 3 - 1 = 2, and from the tables: $\chi_2^2(5\%) = 5.991$

As 7.677 is greater than 5.991, reject H_0 at the 5% level. The distribution of rocks at Site *B* does not match the distribution seen in the sample from site *A*.

Further Statistics 1

12 a Mean =
$$\frac{1 \times 4 + 2 \times 7 + 3 \times 8 + 4 \times 10 + 5 \times 6 + 6 \times 7 + 7 \times 4 + 8 \times 4}{4 + 7 + 8 + 10 + 6 + 7 + 4 + 4} = \frac{214}{50} = 4.28$$

b H_0 : The data can be modelled by a Po(4.28) distribution. H_1 : The data cannot be modelled by Po(4.28) distribution.

Calculate the expected frequencies as follows:

$$E_{0} = 50 \times P(X = 0) = 50 \times \frac{e^{-4.28} 4.28^{0}}{0!} = 0.6921$$

$$E_{1} = 50 \times P(X = 1) = 50 \times \frac{e^{-4.28} 4.28^{1}}{1!} = 2.9623$$

$$E_{2} = 50 \times P(X = 2) = 50 \times \frac{e^{-4.28} 4.28^{2}}{2!} = 6.3394$$

$$E_{3} = 50 \times P(X = 3) = 50 \times \frac{e^{-4.28} 4.28^{3}}{3!} = 9.0442$$

Similarly $E_4 = 9.6773$, $E_5 = 8.2838$, $E_6 = 5.9091$ and $E_{i \ge 7} = 7.0918$

After combining cells to ensure all values of *E* are greater than 5, this gives:

Weekly sales	≤ 2	3	4	5	6	≥ 7	Total
Observed (O _i)	11	8	10	6	7	8	50
Expected (<i>E_i</i>)	9.9938	9.0442	9.6773	8.2838	5.9091	7.0918	50
$\frac{(\boldsymbol{O}_i - \boldsymbol{E}_i)^2}{\boldsymbol{E}_i}$	0.1013	0.1206	0.0108	0.6296	0.2014	0.1163	1.18

Degrees of freedom v = 4 (six data cells with two constraints as λ is estimated by calculation) From the tables: $\chi_4^2(5\%) = 9.488$

As 1.18 is less than 9.488, there is insufficient evidence to reject H_0 at the 5% level. The distribution Po(4.28) may be a suitable model for the data.

13 H₀: There is no association between gender and left- and right-handedness. H₁: There is an association between gender and left- and right-handedness.

These are the observed frequencies (O_i) with totals for each row and column:

	Left-handed	Right-handed	Total
Male	100	600	700
Female	80	800	880
Total	180	1400	1580

Calculate the expected frequencies (E_i) for each cell. For example:

Expected frequency 'Male' and 'Left-handed' = $\frac{700 \times 180}{1580}$ = 79.747

The expected frequency and test statistic (X^2) calculations are:

<i>O</i> _i	E_i	$\frac{(\boldsymbol{O}_i - \boldsymbol{E}_i)^2}{\boldsymbol{E}_i}$
100	79.747	5.1436
600	620.253	0.6613
80	100.253	4.0915
800	779.747	0.5260

$$X^{2} = \sum \frac{(O_{i} - E_{i})^{2}}{E_{i}} = 10.42$$

The number of degrees of freedom v = (2-1)(2-1) = 1; from the tables: $\chi_1^2(5\%) = 3.841$

As 10.42 is greater than 3.841, reject H_0 at the 5% level. Conclude there is evidence of an association between gender and left- and right-handedness in this population.

- 14 a H_0 : There is no association between gender and preferred science subject. H_1 : There is no association between gender and preferred science subject.
 - **b** Total females = 130; total biology = 68; total individuals sampled = 300 $E_{F, Bio} = \frac{130 \times 68}{300} = 29.47 \text{ (2 d.p.)}$
 - **c** The expected frequency and test statistic (X^2) calculations are:

<i>O</i> _i	E_i	$\frac{(\boldsymbol{O}_i - \boldsymbol{E}_i)^2}{\boldsymbol{E}_i}$
74	$\frac{170 \times 119}{300} = 67.43$	0.6401
28	$\frac{170 \times 68}{300} = 38.53$	2.8778
68	$\frac{170 \times 113}{300} = 64.03$	0.2461
45	$\frac{130 \times 119}{300} = 51.57$	0.8370
40	$\frac{130 \times 68}{300} = 29.47$	3.7625
45	$\frac{130 \times 113}{300} = 48.97$	0.3218

$$X^{2} = \sum \frac{(O_{i} - E_{i})^{2}}{E_{i}} = 8.685$$

- **d** The number of degrees of freedom v = (3-1)(2-1) = 2; from the tables: $\chi_2^2(1\%) = 9.210$ As 8.685 is less than 9.210, there is insufficient evidence to reject H₀ at the 1% level.
- e From the tables: $\chi_2^2(5\%) = 5.991$ As 8.685 is greater than 5.991, H₀ would be rejected at the 5% significance level.

Further Statistics 1

15 a i $P(X=1) = \frac{e^{-2.15} \times 2.15^1}{1!} = 0.2504 \ (4 \text{ d.p.})$ ii $P(X>2) = 1 - P(X \le 2) = 1 - 0.6361 = 0.3639 \ (4 \text{ d.p.})$

b Mean calls received =
$$\frac{\sum fx}{\sum f} = \frac{10 \times 0 + 12 \times 1 + 14 \times 2 + 12 \times 3 + 8 \times 4 + 3 \times 5 + 1 \times 6}{60} = \frac{129}{60} = 2.15$$

- c Expected frequency $E_x = 60 \times P(X = x)$ $a = 60 \times P(X = 2) = 60 \times 0.2692 = 16.15 (2 \text{ d.p.})$ b = 60 - (6.99 + 15.03 + a + 11.58 + 6.22 + 2.67) = 1.36
- **d** H₀: The data is drawn from a Poisson distribution. H₁: The data is not drawn from a Poisson distribution.
- e From part c, the observed and expected frequencies are:

Number of calls	0	1	2	3	4	5	≥ 6	Total
Observed (O _i)	10	12	14	12	8	3	1	60
Expected (<i>E_i</i>)	6.99	15.03	16.15	11.58	6.22	2.67	1.36	60

The final three cells should be combined so that the expected value in each cell is at least 5.

f The calculation of the test statistic is:

Number of calls	0	1	2	3	≥ 4	Total
Observed (O _i)	10	12	14	12	12	60
Expected (<i>E_i</i>)	6.99	15.03	16.15	11.58	10.25	60
$\frac{(\boldsymbol{O}_i - \boldsymbol{E}_i)^2}{\boldsymbol{E}_i}$	1.2962	0.6108	0.2862	0.1523	0.2988	2.507

Degrees of freedom $\nu = 3$ (five data cells with two constraints as λ is estimated by calculation) From the tables: $\chi_3^2(5\%) = 7.815$

As 2.507 is less than 7.815, there is insufficient evidence to reject H_0 at the 5% level and to conclude that the data is not drawn from Poisson distribution.

- **16 a** Each friend has an equal probability to offer a lift (success) and David tries until he gets a success. This suggests that a geometric distribution would be appropriate.
 - **b** Let the random variable *X* be the number of calls David has to make to get a lift.

If
$$X \sim \text{Geo}(p)$$
 then $E(X) = \frac{1}{p}$
Using the data:
Mean $= \overline{x} = \frac{\sum fx}{\sum f} = \frac{130 \times 1 + 54 \times 2 + 24 \times 3 + 28 \times 4 + 13 \times 5 + 5 \times 6 + 1 \times 7}{255} = \frac{524}{255}$
Estimate $p = \frac{1}{\overline{x}} = \frac{255}{524} \approx 0.4866$

c H₀: The data is drawn from a geometric distribution.

H₁: The data is not drawn from a geometric distribution.

As $p = \frac{255}{524}$, calculate the expected frequencies using the equation: $255(269)^{i-1}$ $(269)^{i-1}$

$$E_i = 255 \times P(X=i) = 255 \times \frac{255}{524} \left(\frac{269}{524}\right) = 124.09 \left(\frac{269}{524}\right)$$

The observed and expected frequencies are:

Number of calls	1	2	3	4	5	6	≥ 7	Total
Observed (O _i)	130	54	24	28	13	5	1	60
Expected (<i>E_i</i>)	124.09	63.70	32.70	16.79	8.62	4.42	4.67	60

The final two cells should be combined so that the expected value in each cell is at least 5.

Number of calls	1	2	3	4	5	≥6	Total
Observed (O _i)	130	54	24	28	13	6	60
Expected (<i>E_i</i>)	124.09	63.70	32.70	16.79	8.62	9.09	60
$\frac{(\boldsymbol{O}_i - \boldsymbol{E}_i)^2}{\boldsymbol{E}_i}$	0.2815	1.4771	2.3147	7.4844	2.226	1.0504	14.83

Degrees of freedom v = 4 (six data cells with two constraints as p is estimated by calculation) From the tables: $\chi_4^2(5\%) = 9.488$

As 14.83 is greater than 9.488, reject H_0 at the 5% significance level and conclude that the data is not drawn from geometric distribution.

- 17 a Attempts are not independent (unless his short-term memory is as poor as his long-term memory). For example, if he tries 2, he is not likely to try 2 again on the next try. Also, whether he gets through is also dependent on whether they are at home, so is not solely dependent on the accuracy of his attempt.
 - **b** H₀: The data is drawn from a $\text{Geo}\left(\frac{1}{3}\right)$ distribution. H₁: The data is not drawn from a $\text{Geo}\left(\frac{1}{3}\right)$ distribution.

As $p = \frac{1}{3}$, calculate the expected frequencies using the equation:

$$E_i = 52 \times P(X = i) = 5\frac{52}{3}\left(\frac{2}{3}\right)^{i-1}$$

The observed and expected frequencies are:

Number of calls	1	2	3	4	5	6	≥ 7	Total
Observed (O _i)	27	10	10	4	0	0	1	52
Expected (<i>E_i</i>)	17.33	11.56	7.70	5.14	3.42	2.28	4.57	52

The final three cells should be combined so that the expected value in each cell is at least 5.

Number of calls	1	2	3	4	≥ 5	Total
Observed (O _i)	27	10	10	4	1	52
Expected (E_i)	17.33	11.56	7.70	5.14	10.27	52
$\frac{(\boldsymbol{O}_i - \boldsymbol{E}_i)^2}{\boldsymbol{E}_i}$	5.3958	0.2105	0.6870	0.2528	8.3674	14.914

Degrees of freedom v = 4 (five data cells with a single constraint) From the tables: $\chi_3^2(5\%) = 9.488$

As 2.507 is less than 7.815, there is insufficient evidence to reject H_0 at the 5% level and to conclude that the data is not drawn from Poisson distribution.

Challenge

a Let l_i be the midpoint of each of the groups. Then the estimate of the mean is given by:

$$\overline{l} = \frac{\sum l_i f_i}{n} = \frac{2.5 \times 7 + 7.5 \times 63 + 12.5 \times 221 + 17.5 \times 177 + 22.5 \times 32}{500} = \frac{7070}{500} = 14.14$$

So the estimate of the mean is 14.14 minutes and the estimate of the variance is given by:

$$\sigma^{2} = \frac{\sum l_{i}^{2} f_{i}}{n} - \overline{l}^{2}$$

$$= \frac{2.5^{2} \times 7 + 7.5^{2} \times 63 + 12.5^{2} \times 221 + 17.5^{2} \times 177 + 22.5^{2} \times 32}{500} - 14.14^{2}$$

$$= \frac{108525}{500} - 217.05 - 199.9396 = 17.11 \text{ (2 d.p.)}$$

b H₀: Call length can be modelled by a normal distribution.H₁: Call length cannot be modelled by a normal distribution.

First, extend the categories so that the values taken by *l* lie in the interval $(-\infty,\infty)$ to make the data interval compatible with a normal distribution.

Then given $X \sim N(14.14, 17.11)$ use the normal cumulative distribution function on a calculator to find the expected frequencies.

$$\begin{split} E_{l<5} &= 500 \, \mathrm{P}(X < 5) = 500 \times 0.01356 = 6.78 \\ E_{5 \leqslant l<10} &= 500 \, \mathrm{P}(5 \leqslant X < 10) = 500 \left(\mathrm{P}(X < 10) - \mathrm{P}(X < 5) \right) = 500 (0.15845 - 0.01356) = 72.445 \\ E_{10 \leqslant l<15} &= 500 \, \mathrm{P}(10 \leqslant X < 15) = 500 \left(\mathrm{P}(X < 15) - \mathrm{P}(X < 10) \right) = 500 (0.58235 - 0.15845) = 211.95 \\ E_{15 \leqslant l<20} &= 500 \, \mathrm{P}(15 \leqslant X < 20) = 500 \left(\mathrm{P}(X < 20) - \mathrm{P}(X < 15) \right) = 500 (0.92171 - 0.58235) = 169.68 \\ E_{l>20} &= 500 \, \mathrm{P}(X > 20) = 500 (1 - \mathrm{P}(X < 20) = 500 (1 - 0.92171) = 39.145 \end{split}$$

Length of call	<i>l</i> < 5	$5 \leq l \leq 10$	$10 \leq l \leq 15$	$15 \leq l \leq 20$	$l \geqslant 20$	Total
Observed (O _i)	7	63	221	177	32	500
Expected (<i>E_i</i>)	6.78	72.445	211.95	169.68	39.145	52
$\frac{(\boldsymbol{O}_i - \boldsymbol{E}_i)^2}{\boldsymbol{E}_i}$	0.0071	1.2314	0.3864	0.3158	1.3042	3.244

Calculating the expected values uses total, mean estimate and variance estimate calculated from the data, consuming three degrees of freedom, so v = 5 - 3 = 2From the statistical table: $\chi_2^2(5\%) = 5.991$

As 3.244 is less than 5.991, there is insufficient evidence to reject H_0 at the 5% level. A normal distribution is a suitable model for this data.