Geometric and negative binomial distributions 3A

1 a
$$P(X = 10) = 0.15(1 - 0.15)^{9} = 0.0347$$
 (4 d.p.)
b $P(X \le 7) = 1 - (1 - 0.15)^{7} = 0.6794$ (4 d.p.)
c $P(3 \le X \le 12) = P(X \le 12) - P(X \le 2)$
 $= 1 - (1 - 0.15)^{12} - (1 - (1 - 0.15)^{2})$
 $= 0.8578 - 0.2775 = 0.5803$ (4 d.p.)

2 a
$$P(Y=6) = 0.23(0.77)^5 = 0.0623 (4 \text{ d.p.})$$

b $P(Y \ge 4) = 0.77^3 = 0.4565 (4 \text{ d.p.})$
c $P(2 < Y < 8) = P(Y > 2) - P(Y > 7)$ Use
 $= 0.77^2 - 0.77^7$
 $= 0.5929 - 0.1605 = 0.4324 (4 \text{ d.p.})$

Use $P(X > x) = (1 - p)^{x}$

3 a
$$P(X = 4) = \left(\frac{5}{6}\right)^3 \times \frac{1}{6} = \frac{125}{1296} = 0.0965 \ (4 \text{ d.p.})$$

b $P(X \le 3) = 1 - \left(\frac{5}{6}\right)^3 = \frac{91}{216} = 0.4213 \ (4 \text{ d.p.})$
c $P(X \ge 5) = \left(\frac{5}{6}\right)^4 = \frac{625}{1296} = 0.4823 \ (4 \text{ d.p.})$
d $P(2 \le X \le 6) = P(X \le 6) - P(X \le 1)$
 $= \left(1 - \left(\frac{5}{6}\right)^6\right) - \left(1 - \left(\frac{5}{6}\right)\right) = 0.6651 - 0.1667 = 0.4984 \ (4 \text{ d.p.})$

4 Let *X* denote the number of attempts needed to pass.

a i $P(X=3) = 0.3(0.7)^2 = 0.147$ ii $P(X \ge 4) = 0.7^3 = 0.343$

b The attempts are independent. The probability of passing remains the same on each attempt.

5 Let *X* denote the number of attempts needed to roll a 4.

a i
$$P(X = 1) = \frac{1}{4} \left(\frac{3}{4}\right)^6 = \frac{1}{4} = 0.25$$

ii $P(X = 5) = \frac{1}{4} \left(\frac{3}{4}\right)^4 = \frac{81}{1024} = 0.0791 \text{ (4 d.p.)}$
iii $P(X \le 4) = 1 - \left(\frac{3}{4}\right)^4 = \frac{175}{256} = 0.6836 \text{ (4 d.p.)}$

b The probability of rolling a 4 remains the same on each attempt.

6 a Let X denote the number of attempts needed complete the task.

P(X = x) = 0.45(0.55)^{x-1} = 0.136125
⇒ 0.55^{x-1} = 0.3025
⇒ x - 1 =
$$\frac{\log 0.3025}{\log 0.55}$$

⇒ x = 1 + 2 = 3
b P(X ≤ 4) = 1 - 0.55⁴ = 0.9085 (4 d.p.)
7 a P(X = x) = 0.032(0.968)^{x-1} = 0.0203
⇒ 0.968^{x-1} = 0.634375
⇒ x = 1 + $\frac{\log 0.634375}{\log 0.968}$ = 14.9936
So x = 15
b P(X ≤ x) = 1 - 0.968^x < 0.1
0.968^x > 0.9
⇒ x < $\frac{\log 0.9}{\log 0.968}$ = 3.2396
So x = 3
c P(X ≥ x) = 0.968^{x-1} < 0.05
⇒ x > 1 + $\frac{\log 0.05}{\log 0.968}$ = 93.1106
So x = 94

8 Let X denote the number of calls up to and including the first report of a hardware problem.

a
$$P(X=7) = 0.1(0.9)^6 = 0.0531 (4 d.p.)$$

- **b** $P(X > 5) = 0.9^5 = 0.5905$ (4 d.p.)
- 9 Let X denote the number of people asked up to and including the first person to like squid pizza.
 - **a** $P(X=10) = 0.05(0.95)^9 = 0.0315$ (4 d.p.)
 - **b** $P(X \ge 15) = 0.95^{14} = 0.4877 (4 \text{ d.p.})$

10 Let X denote the number of games required to reach a decision.

a There are $2^3 = 8$ possible outcomes, since each player can either roll an even or an odd score. The only outcomes that wouldn't result in a decision are OOO (odd, odd, odd) and EEE (even, even,

even). So the probability of a decision being made in any game is $\frac{8-2}{8} = \frac{3}{4}$

P(X = 3) =
$$\frac{3}{4} \left(\frac{1}{4}\right)^2 = \frac{3}{64} = 0.0469 \ (4 \ d.p.)$$

b P(X ≥ 4) = $\left(\frac{1}{4}\right)^3 = \frac{1}{64} = 0.0156 \ (4 \ d.p.)$

11 a Use this model $X \sim Po(4)$, and find the required value from the tables in the textbook $P(X \ge 5) = 1 - P(X \le 4)$

```
=1-0.6288=0.3712
```

b Let *Y* denote the number of hours that pass before at least 5 customers have come into the pharmacy in an hour. So from part **a**, $Y \sim \text{Geo}(0.3712)$

 $P(Y = 5) = 0.3712(0.6288)^4 = 0.0580 (4 \text{ d.p.})$

c $P(Y > 8) = 0.6288^8 = 0.0244$ (4 d.p.)