Discrete random variables Mixed exercise 1

a The probability distribution for X is:

\boldsymbol{x}	1	2	3	4	5	6
$\mathbf{P}(\boldsymbol{X}=\boldsymbol{x})$	$\frac{1}{21}$	$\frac{2}{21}$	$\frac{3}{21}$	$\frac{4}{21}$	$\frac{5}{21}$	$\frac{6}{21}$

b $\mathrm{P}(2<X \leq 5)=\mathrm{P}(X=3)+\mathrm{P}(X=4)+\mathrm{P}(X=5)=\frac{3}{21}+\frac{4}{21}+\frac{5}{21}=\frac{12}{21}=7$
c $\mathrm{E}(X)=1 \times \frac{1}{21}+2 \times \frac{2}{21}+3 \times \frac{3}{21}+4 \times \frac{4}{21}+5 \times \frac{5}{21}+6 \times \frac{6}{21}$

$$
=\frac{1}{21}(1+4+9+16+25+36)=\frac{91}{21}=\frac{13}{3}
$$

d $\mathrm{E}\left(X^{2}\right)=1 \times \frac{1}{21}+4 \times \frac{2}{21}+9 \times \frac{3}{21}+16 \times \frac{4}{21}+25 \times \frac{5}{21}+36 \times \frac{6}{21}$

$$
=\frac{1}{21}(1+8+27+64+125+216)=\frac{441}{21}=21
$$

$\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}$

$$
\begin{aligned}
& =21-\left(\frac{13}{3}\right)^{2}=21-\frac{169}{9} \\
& =\frac{189}{9}-\frac{169}{9}=\frac{20}{9}=2.22(2 \text { d.p. })
\end{aligned}
$$

e $\operatorname{Var}(3-2 X)=\operatorname{Var}(-2 X+3)$

$$
\begin{aligned}
& =(-2)^{2} \operatorname{Var}(X) \\
& =4 \times \frac{20}{9}=\frac{80}{9}=8.89(2 \text { d.p. })
\end{aligned}
$$

f $\mathrm{E}\left(X^{3}\right)=\sum x^{3} \mathrm{P}(X=x)$

$$
\begin{aligned}
& =1^{3} \times \frac{1}{21}+2^{3} \times \frac{2}{21}+3^{3} \times \frac{3}{21}+4^{3} \times \frac{4}{21}+5^{3} \times \frac{5}{21}+6^{3} \times \frac{6}{21} \\
& =\frac{1}{21}(1+16+81+256+625+1296) \\
& =\frac{2275}{21}=\frac{325}{3}=108.33(2 \text { d.p. })
\end{aligned}
$$

2 a Probabilities sum to 1 , so:

$$
\begin{aligned}
& 0.1+0.2+0.3+r+0.1+0.1=1 \\
& r=1-0.8=0.2
\end{aligned}
$$

b $\mathrm{P}(-1 \leq X<2)=\mathrm{P}(X=-1)+\mathrm{P}(X=0)+\mathrm{P}(X=1)=0.2+0.3+0.2=0.7$
c $\mathrm{E}(X)=-2 \times 0.1+(-1) \times 0.1+0 \times 0.3+1 \times 0.2+2 \times 0.1+3 \times 0.1$

$$
=-0.2-0.2+0.2+0.2+0.3=0.3
$$

$\mathrm{E}(2 X+3)=2 \mathrm{E}(X)+3=(2 \times 0.3)+3=3.6$

2 d $\mathrm{E}\left(X^{2}\right)=4 \times 0.1+1 \times 0.1+0 \times 0.3+1 \times 0.2+4 \times 0.1+9 \times 0.1$

$$
=0.4+0.2+0.2+0.4+0.9=2.1
$$

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2} \\
& =2.1-(0.3)^{2}=2.1-0.09=2.01
\end{aligned}
$$

$\operatorname{Var}(2 X+3)=2^{2} \operatorname{Var}(X)$

$$
=4 \times 2.01=8.04
$$

3 a Probabilities sum to 1 , so:
$\frac{1}{5}+b+b+\frac{1}{5}=1$
$2 b=1-\frac{2}{5}=\frac{3}{5}$
$b=\frac{3}{10}$
b $\mathrm{E}(X)=0 \times \frac{1}{5}+1 \times \frac{3}{10}+2 \times \frac{5}{10}=\frac{13}{10}=1.3$
c $\mathrm{E}\left(X^{2}\right)=0 \times \frac{1}{5}+1 \times \frac{3}{10}+4 \times \frac{5}{10}=\frac{23}{10}=2.3$
$\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}$

$$
=2.3-1.3^{2}=2.3-1.69=0.61
$$

d $\mathrm{P}(X \leq 1.5)=P(X=0)+P(X=1)=\frac{1}{5}+\frac{3}{10}=0.5$
4 a Probabilities sum to 1 , so:
$k(1-0)+k(1-1)+k(2-1)+k(3-1)=1$
$k+k+2 k=1$
$4 k=1$
$k=\frac{1}{4}=0.25$
b The probability distribution for X is:

\boldsymbol{x}	0	1	2	3
$\mathbf{P}(\boldsymbol{X}=\boldsymbol{x})$	$\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{2}$

$\mathrm{E}(X)=0 \times \frac{1}{4}+1 \times 0+2 \times \frac{1}{4}+3 \times \frac{1}{2}=\frac{1}{2}+\frac{3}{2}=2$
$\mathrm{E}\left(X^{2}\right)=0 \times \frac{1}{4}+1 \times 0+4 \times \frac{1}{4}+9 \times \frac{1}{2}=\frac{11}{2}=5.5$
c $\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=5.5-2^{2}=5.5-4=1.5$
$\operatorname{Var}(2 X-2)=2^{2} \operatorname{Var}(X)=4 \times 1.5=6$

5 a $\mathrm{P}(1<X \leqslant 2)=\mathrm{P}(X=2)=\frac{1}{8}$
b $\mathrm{E}(X)=0 \times \frac{1}{4}+1 \times \frac{1}{2}+2 \times \frac{1}{8}+3 \times \frac{1}{8}=\frac{1}{2}+\frac{1}{4}+\frac{3}{8}=\frac{9}{8}$
c $\mathrm{E}(3 X-1)=3 \mathrm{E}(X)-1=\frac{27}{8}-1=\frac{19}{8}$
d $\mathrm{E}\left(X^{2}\right)=0 \times \frac{1}{4}+1 \times \frac{1}{2}+4 \times \frac{1}{8}+9 \times \frac{1}{8}=\frac{1}{2}+\frac{1}{2}+\frac{9}{8}=\frac{17}{8}$
$\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=\frac{17}{8}-\left(\frac{9}{8}\right)^{2}=\frac{136}{64}-\frac{81}{64}=\frac{55}{64}$
e $\mathrm{E}(\log (X+1))=\sum \log (X+1) \mathrm{P}(X=x)$

$$
\begin{aligned}
& =\log (0+1) \times \frac{1}{4}+\log (1+1) \times \frac{1}{2}+\log (2+1) \times \frac{1}{8}+\log (3+1) \times \frac{1}{8} \\
& =0+\frac{1}{2} \log 2+\frac{1}{8} \log 3+\frac{1}{8} \log 4 \\
& =0.5 \times 0.30102+0.125 \times 0.47712+0.125 \times 0.60206 \\
& =0.2854 \text { (4 d.p.) }
\end{aligned}
$$

6 a The probability distribution for X^{2} is:

$\boldsymbol{x}^{\mathbf{2}}$	1	4	9	19
$\mathbf{P}\left(\boldsymbol{X}^{\mathbf{2}}=\boldsymbol{x}^{\mathbf{2}}\right)$	0.4	0.2	0.1	0.3

$\mathrm{P}\left(3<X^{2}<10\right)=0.2+0.1=0.3$
b $\mathrm{E}(X)=1 \times 0.4+2 \times 0.2+3 \times 0.1+4 \times 0.3=2.3$
c $\mathrm{E}\left(X^{2}\right)=1 \times 0.4+4 \times 0.2+9 \times 0.1+16 \times 0.3=6.9$
$\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}$

$$
=6.9-(2.3)^{2}=6.9-5.29=1.61
$$

d $\mathrm{E}\left(\frac{3-X}{2}\right)=\frac{3}{2}-\frac{1}{2} \mathrm{E}(X)=\frac{3}{2}-\frac{2.3}{2}=\frac{0.7}{2}=0.35$
e $\mathrm{E}(\sqrt{X})=\sum \sqrt{X} \mathrm{P}(X=x)$

$$
\begin{aligned}
& =1 \times 0.4+\sqrt{2} \times 0.2+\sqrt{3} \times 0.1+\sqrt{4} \times 0.3 \\
& =0.4+0.2828+0.1732+0.6 \\
& =1.4560(4 \text { d.p. })
\end{aligned}
$$

f $\mathrm{E}\left(2^{-x}\right)=\sum 2^{-x} \mathrm{P}(X=x)$
$=2^{-1} \times 0.4+2^{-2} \times 0.2+2^{-3} \times 0.1+2^{-4} \times 0.3$
$=0.5 \times 0.4+0.25 \times 0.2+0.125 \times 0.1+0.0625 \times 0.3$
$=0.2+0.05+0.0125+0.01875$
$=0.28125$

7 a A discrete uniform distribution.
b Any distribution where all the probabilities are the same. An example is throwing a fair die.
c There are 5 possible values. So as the variable has discrete uniform distribution, each value has a $\frac{1}{5}(=0.2)$ probability. $\mathrm{E}(\mathrm{X})$ can be found by symmetry, as the probability distribution is uniform, or by:
$\mathrm{E}(X)=0.2(0+1+2+3+4)=0.2 \times 10=2$
d $\mathrm{E}\left(X^{2}\right)=0.2(0+1+4+9+16)=0.2 \times 30=6$
$\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=6-2^{2}=6-4=2$
8 a Probabilities sum to 1 , so:
$0.1+p+q+0.3+0.1=1$
$p+q=0.5$
$\mathrm{E}(X)=0.1+2 p+3 q+1.2+0.5=3.1$
$2 p+3 q=1.3$
b Multiply equation (1) by 2 :
$2 p+2 q=1$
Subtract equation (3) from equation (2) $q=0.3$

Substitute for q in equation (1)
$p+0.3=0.5 \Rightarrow p=0.2$
c $\mathrm{E}(X)=1 \times 0.1+2 \times 0.2+3 \times 0.3+4 \times 0.3+5 \times 0.1$ $=0.1+0.4+0.9+1.2+0.5=3.1$
$\mathrm{E}\left(X^{2}\right)=1 \times 0.1+4 \times 0.2+9 \times 0.3+16 \times 0.3+25 \times 0.1$ $=0.1+0.8+2.7+4.8+2.5=10.9$
$\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=10.9-(3.1)^{2}=10.9-9.61=1.29$
d $\operatorname{Var}(2 X+3)=2^{2} \operatorname{Var}(X)=4 \times 1.29=5.16$
9 a The probability distribution for X is:

\boldsymbol{x}	1	2	3	4	5
$\mathbf{P}(\boldsymbol{X}=\boldsymbol{x})$	k	2 k	k	2 k	3 k

Probabilities sum to 1 , so:
$k+2 k+k+2 k+3 k=9 k=1$
$k=\frac{1}{9}$
b $\mathrm{E}(X)=1 k+2 \times 2 k+3 k+4 \times 2 k+5 \times 3 k$

$$
=31 k=\frac{31}{9}
$$

9 c $\mathrm{E}\left(X^{2}\right)=1 k+4 \times 2 k+9 k+16 \times 2 k+25 \times 3 k$

$$
=125 k=\frac{125}{9}
$$

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left(X^{2}\right)-(E(X))^{2} \\
& =\frac{125}{9}-\left(\frac{31}{9}\right)^{2}=\frac{1125}{81}-\frac{961}{81}=\frac{164}{81} \\
& =2.02(3 \text { s.f. })
\end{aligned}
$$

d $\operatorname{Var}(3-2 X)=(-2)^{2} \operatorname{Var}(X)=4 \times 2.02=8.1$ (1 d.p.)
$10 \mathbf{a} \quad \mathrm{E}(X)=\frac{1}{6}(1+2+3+4+5+6)=\frac{21}{6}=\frac{7}{2}=3.5$

$$
\mathrm{E}\left(X^{2}\right)=\frac{1}{6}(1+4+9+16+25+36)=\frac{91}{6}
$$

$\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}$

$$
=\frac{91}{6}-\left(\frac{21}{6}\right)^{2}=\frac{546}{36}-\frac{441}{36}=\frac{105}{36}=\frac{35}{12}
$$

b $\mathrm{E}(2 X-1)=2 \mathrm{E}(X)-1=7-1=6$
c $\operatorname{Var}(3-2 X)=(-2)^{2} \operatorname{Var}(X)=4 \times \frac{35}{12}=\frac{35}{3}=11.67$ (2 d.p.)
d $\mathrm{E}\left(2^{x}\right)=\sum 2^{x} \mathrm{P}(X=x)$

$$
=\frac{1}{6}(2+4+8+16+32+64)=\frac{126}{6}=21
$$

11 a The probability distribution for X is:

\boldsymbol{x}	1	2	3	4
$\mathbf{P}(\boldsymbol{X}=\boldsymbol{x})$	$\frac{2}{26}$	$\frac{5}{26}$	$\frac{8}{26}$	$\frac{11}{26}$

b $\mathrm{P}(2<X \leqslant 4)=\mathrm{P}(X=3)+\mathrm{P}(X=4)=\frac{19}{26}=0.731$ (3 d.p.)
c $\mathrm{E}(X)=1 \times \frac{2}{26}+2 \times \frac{5}{26}+3 \times \frac{8}{26}+4 \times \frac{11}{26}$

$$
=\frac{2+10+24+44}{26}=\frac{80}{26}=\frac{40}{13}
$$

d $\mathrm{E}\left(X^{2}\right)=1 \times \frac{2}{26}+4 \times \frac{5}{26}+9 \times \frac{8}{26}+16 \times \frac{11}{26}$

$$
=\frac{2+20+72+176}{26}=\frac{270}{26}=\frac{135}{13}
$$

$\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}$

$$
=\frac{135}{13}-\left(\frac{40}{13}\right)^{2}=\frac{1755}{169}-\frac{1600}{169}=\frac{155}{169}=0.92 \text { (2 s.f.) }
$$

11 e $\operatorname{Var}(1-3 X)=(-3)^{2} \operatorname{Var}(X)=9 \times \frac{155}{169}=\frac{1395}{169}=8.3$ (2 s.f.)

12 a $\mathrm{E}(3 Y+1)=3 \mathrm{E}(Y)+1=3 \times 2+1=7$
b $\mathrm{E}(2-3 Y)=2-3 \mathrm{E}(Y)=2-3 \times 2=-4$
c $\operatorname{Var}(3 Y+1)=3^{2} \operatorname{Var}(Y)=9 \times 9=81$
d $\operatorname{Var}(2-3 Y)=(-3)^{2} \operatorname{Var}(Y)=9 \times 9=81$
e $\mathrm{E}\left(Y^{2}\right)=\operatorname{Var}(Y)+(E(Y))^{2}=9+2^{2}=13$
f $\mathrm{E}((Y-1)(Y+1))=\mathrm{E}\left(Y^{2}-1\right)=\mathrm{E}\left(Y^{2}\right)-1=13-1=12$
13 As the random variable T has a standard deviation of $5, \operatorname{Var}(T)=5^{2}=25$
$\mathrm{E}(S)=\mathrm{E}(3 T+4)=3 \mathrm{E}(T)+4=3 \times 20+4=64$
$\operatorname{Var}(S)=\operatorname{Var}(3 T+4)=3^{2} \operatorname{Var}(T)=9 \times 25=225$
14 a The probability distribution for X is:

\boldsymbol{x}	1	2	3
$\mathbf{P}(\boldsymbol{X}=\boldsymbol{x})$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{3}{8}$

b $\mathrm{E}(X)=1 \times \frac{1}{4}+2 \times \frac{3}{8}+3 \times \frac{3}{8}=\frac{17}{8}=2.125$
c $\mathrm{E}\left(X^{2}\right)=1 \times \frac{1}{4}+4 \times \frac{3}{8}+9 \times \frac{3}{8}=\frac{41}{8}=5.125$
$\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}$

$$
=\frac{41}{8}-\left(\frac{17}{8}\right)^{2}=\frac{328}{64}-\frac{289}{64}=\frac{39}{64}=0.609(3 \text { d.p. })
$$

d $\mathrm{E}(2 X+1)=2 \mathrm{E}(X)+1=\frac{17}{4}+1=\frac{21}{4}=5.25$
e $\operatorname{Var}(3 X-1)=(3)^{2} \operatorname{Var}(X)=9 \times \frac{39}{64}=\frac{351}{64}=5.484$ (3 d.p.)
15a $\mathrm{E}(X)=-0.2+0+0.2+0.2=0.2$
b $\mathrm{E}\left(X^{2}\right)=0.2+0+0.2+0.4=0.8$
$\operatorname{Var}(X)=0.8-0.2^{2}=0.8-0.04=0.76$
c $\mathrm{E}\left(\frac{1}{3} X+1\right)=\frac{1}{3} \mathrm{E}(X)+1=\frac{1}{3} \times 0.2+1=\frac{1}{3} \times \frac{1}{5}+1=\frac{16}{15}=1.067$ (3 d.p.)
d $\operatorname{Var}\left(\frac{1}{3} X+1\right)=\left(\frac{1}{3}\right)^{2} \operatorname{Var}(X)=\frac{1}{9} \times 0.76=\frac{1}{9} \times \frac{19}{25}=\frac{19}{225}=0.0844$ (3 d.p.)

16a Probabilities sum to 1 , so:

$$
\begin{align*}
& 0.1+0.3+a+b=1 \\
& a+b=0.6 \tag{1}
\end{align*}
$$

Rearrange the equation for Y to get X in terms of Y :

$$
\begin{align*}
& 3 X=Y+1 \Rightarrow X=\frac{1}{3} Y+\frac{1}{3} \\
& \begin{aligned}
E(X) & =E\left(\frac{1}{3} Y+\frac{1}{3}\right)=\frac{1}{3} E(Y)+\frac{1}{3}=\frac{1}{3} \times \frac{11}{10}+\frac{1}{3}=\frac{21}{30}=0.7 \\
\mathrm{E}(X) & =\sum x \mathrm{P}(X=x) \\
& =-0.1+a+2 b=0.7
\end{aligned}
\end{align*}
$$

So $a+2 b=0.8$
Subtract equation (1) from equation (2), which gives:

$$
b=0.2
$$

So by substituting the value for b in equation (1)

$$
a+0.2=0.6 \Rightarrow a=0.4
$$

b $\mathrm{E}\left(X^{2}\right)=1 \times 0.1+0 \times 0.3+1 \times 0.4+4 \times 0.2=1.3$

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=1.3-0.7^{2}=1.3-0.49=0.81
$$

c $\operatorname{Var}(Y)=\operatorname{Var}(1-3 X)=(-3)^{2} \operatorname{Var}(X)=9 \times 0.81=7.29$
d $\mathrm{P}(Y+2>X)=\mathrm{P}(3 X-1+2>X)$

$$
\begin{aligned}
& =P(2 X>-1)=P(X>-0.5) \\
& =0.3+0.4+0.2=0.9
\end{aligned}
$$

17 a Probabilities sum to 1 , so:

$$
\begin{equation*}
2 a+2 b+c=1 \tag{1}
\end{equation*}
$$

Rearrange the equation for Y to get X in terms of Y :

$$
\begin{align*}
& Y=\frac{2-3 X}{5} \Rightarrow X=\frac{2}{3}-\frac{5}{3} Y \\
& \mathrm{E}(X)=\mathrm{E}\left(\frac{2}{3}-\frac{5}{3} Y\right)=\frac{2}{3}-\frac{5}{3} \mathrm{E}(Y) \\
& \quad=\frac{2}{3}-\frac{5}{3}(-0.98)=\frac{2+4.9}{3}=\frac{6.9}{3}=2.3 \\
& \mathrm{E}(X)=\sum x \mathrm{P}(X=x)=-2 a+0 \times b+2 a+3 b+4 c=2.3 \\
& 3 b+4 c=2.3 \tag{2}\\
& Y \geqslant-1 \Rightarrow \frac{2-3 X}{5} \geqslant-1 \\
& \Rightarrow 2-3 X \geqslant-5 \\
& \Rightarrow X \leqslant \frac{7}{3}
\end{align*}
$$

So $\mathrm{P}(Y \geqslant-1)=0.4 \Rightarrow \mathrm{P}\left(X \leqslant \frac{7}{3}\right)=0.4$
$\Rightarrow 2 a+b=0.4$

17 b Subtract equation (3) from equation (1) gives:
$b+c=0.6$
Multiply equation (4) by 3
$3 b+3 c=1.8$
Subtract equation (5) from equation (2)

$$
c=2.3-1.8=0.5
$$

Substitute value for c in equation (4)
$b+0.5=0.6 \Rightarrow b=0.1$
Substitute value for b in equation (3)
$2 a+0.1=0.4 \Rightarrow a=0.15$
Solution:
$a=0.15, b=0.1, c=0.5$
c $\mathrm{P}(-2 X>10 Y)=\mathrm{P}(-2 X>2 \times(2-3 X))$
$=\mathrm{P}(4 X>4)=\mathrm{P}(X>1)$
$=a+b+c=0.15+0.1+0.5+0.75$

Challenge

$$
\begin{aligned}
\mathrm{E}(X) & =1 \times \frac{1}{n}+2 \times \frac{1}{n}+3 \times \frac{1}{n}+4 \times \frac{1}{n}+\ldots \ldots . .+n \times \frac{1}{n} \\
& =\frac{1}{n}(1+2+3+4+\ldots \ldots .+n) \\
& =\frac{1}{n} \sum_{i=1}^{n} i \\
& =\frac{1}{n} \times \frac{n(n+1)}{2} \quad \quad \text { (using first sum in hint) } \\
& =\frac{n+1}{2} \\
\mathrm{E}\left(X^{2}\right) & =\frac{1}{n}\left(1+4+9+16+\ldots \ldots . .+n^{2}\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} i^{2} \\
& =\frac{1}{n} \times \frac{n(n+1)(2 n+1)}{6} \quad \quad \text { (using second sum in hint) } \\
& =\frac{(n+1)(2 n+1)}{6}
\end{aligned}
$$

$$
\begin{array}{rlr}
\operatorname{Var}(X) & =E\left(X^{2}\right)-(E(X))^{2} & \\
& =\frac{(n+1)(2 n+1)}{6}-\frac{(n+1)^{2}}{4} & \\
& =\frac{2(n+1)(2 n+1)}{12}-\frac{3(n+1)^{2}}{12} & \\
& =\frac{4 n^{2}+6 n+2-3 n^{2}-6 n-3}{12} & \\
& =\frac{n^{2}-1}{12} & \\
& =\frac{(m+1)(n-1)}{12} & \\
\text { (factoriplying out) } \\
& &
\end{array}
$$

