Discrete random variables 1D

1 a Rearrange the formula $Y=4 X-6$ to get an expression for X in terms of Y :

$$
\begin{aligned}
Y & =4 X-6 \text { gives } \\
X & =\frac{Y+6}{4} \\
X & =\frac{Y}{4}+\frac{3}{2} \\
\mathrm{E}(X) & =\mathrm{E}\left(\frac{Y}{4}+\frac{3}{2}\right)=\frac{1}{4} \mathrm{E}(Y)+\frac{3}{2} \\
& =\frac{1}{4} \times 2+\frac{3}{2}=\frac{1}{2}+\frac{3}{2}=2
\end{aligned}
$$

b $\operatorname{Var}(X)=\operatorname{Var}\left(\frac{Y}{4}+\frac{3}{2}\right)=\left(\frac{1}{4}\right)^{2} \operatorname{Var}(Y)$

$$
=\frac{1}{16} \times 32=2
$$

c Standard deviation $=\sqrt{\operatorname{Var}(X)}=\sqrt{2}=1.4142$ (4 d.p.)
2 a Rearrange the formula get an expression for X in terms of Y :

$$
\begin{aligned}
2 Y & =4-3 X \\
3 X & =4-2 Y \\
X & =\frac{4-2 Y}{3} \\
X & =\frac{4}{3}-\frac{2}{3} Y \\
\mathrm{E}(X) & =\mathrm{E}\left(\frac{4}{3}-\frac{2}{3} Y\right)=\frac{4}{3}-\frac{2}{3} \mathrm{E}(Y) \\
\quad & =\frac{4}{3}-\frac{2}{3}(-1)=2
\end{aligned}
$$

b $\operatorname{Var}(X)=\operatorname{Var}\left(\frac{4}{3}-\frac{2 Y}{3}\right)=\left(-\frac{2}{3}\right)^{2} \operatorname{Var}(Y)$

$$
=\frac{4}{9} \times 9=4
$$

c $\quad \operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}$

$$
\text { So } \begin{aligned}
\mathrm{E}\left(X^{2}\right) & =\operatorname{Var}(X)+(\mathrm{E}(X))^{2} \\
& =4+2^{2}=8
\end{aligned}
$$

3 Rearranging the formula for Y to get an expression for X gives:
$X=\frac{Y}{2}-\frac{3}{2}$
$\mathrm{E}(X)=\mathrm{E}\left(\frac{Y}{2}-\frac{3}{2}\right)=\frac{1}{2} \mathrm{E}(Y)-\frac{3}{2}$

$$
=\frac{1}{2} \times 8-\frac{3}{2}=4-\frac{3}{2}=\frac{5}{4}=2.5
$$

$\mathrm{E}(X)=\sum x \mathrm{P}(X=x)=2.5$
$0.3+2 a+3 b+4 \times 0.2=2.5$
$2 a+3 b+1.1=2.5$
$2 a+3 b=1.4$
$\sum \mathrm{P}(X=x)=1$
So $0.3+a+b+0.2=1$
$a+b=0.5$
$2 \times(\mathbf{2}) \Rightarrow 2 a+2 b=1$
(1) $-\mathbf{(3)} \Rightarrow b=0.4$

From (2) $a+0.4=0.5 \Rightarrow a=0.1$

Solution:
$a=0.1, \quad b=0.4$
4 a The probability distribution of Y is:

\boldsymbol{y}	1	0	-1
$\mathbf{P}(\boldsymbol{Y}=\boldsymbol{y})$	a	b	0.3

$\mathrm{E}(Y)=a+0 \times b-1 \times 0.3=a-0.3$
As $a+b+0.3=1,0 \leq a \leq 0.7$
$\max a=0.7 \Rightarrow \mathrm{E}(Y)=0.4$
$\min a=0 \Rightarrow \mathrm{E}(Y)=-0.3$
So range of possible values for $\mathrm{E}(Y)$ is $-0.3 \leq \mathrm{E}(Y) \leq 0.4$
b $\mathrm{E}(Y)=0.2$ gives $0.2=a-0.3 \Rightarrow a=0.5$
As probabilities sum to 1 :
$a+b+0.3=1 \Rightarrow b=1-0.3-0.5=0.2$

5 a The probability distribution of Y is:

\boldsymbol{y}	1	0	1	4	9
$\mathbf{P}(\boldsymbol{Y}=\boldsymbol{y})$	a	b	c	b	a

The sum of probabilities sum to 1 , so:

$$
\begin{align*}
& a+b+c+b+a=1 \\
& \Rightarrow 2 a+2 b+c=1 \tag{1}
\end{align*}
$$

$\mathrm{E}(Y)=2.4$, so:
$1 \times a+0 \times b+1 \times c+4 b+9 a=2.4$
$\Rightarrow a+c+4 b+9 a=2.4$
$\Rightarrow 10 a+4 b+c=2.4$
$\mathrm{P}(Y>2)=\mathrm{P}(Y=4)+\mathrm{P}(Y=9)$, and as $\mathrm{P}(Y>2)=0.4$, this gives:
$a+b=0.4$
b Multiply equation (3) by 2 :
$2 a+2 b=0.8$
Subtract this equation from (1), gives $c=0.2$
Substitute c into equation (2):
$10 a+4 b+0.2=2.4$
$10 a+4 b=2.2$
Multiply equation (3) by 2 :
$10 a+10 b=4$
Subtract equation (4) from this equation:
$6 b=4-2.2 \Rightarrow b=0.3$
Substitute b and c into equation (1):
$2 a+2 \times 0.3+0.2=1 \Rightarrow a=0.1$
Solution: $a=0.1, b=0.3, c=0.2$
c Use the values found in part b to find the probability distribution for $2 X+3$ and Y :

\boldsymbol{x}	-2	-1	0	1	2
$\mathbf{2 x}+\mathbf{3}$	-1	1	3	5	7
\boldsymbol{y}	1	0	1	4	9
$\mathbf{P}(\boldsymbol{Y}=\boldsymbol{y})$	0.1	0.3	0.2	0.3	0.1

From the table $\mathrm{P}(2 X+3 \leq Y)=\mathrm{P}(X=-2)+\mathrm{P}(X=2)=0.1+0.1=0.2$
Alternatively note that $2 X+3 \leq Y \Rightarrow 2 X+3 \leq(X+1)^{2}$
So $2 X+3 \leq X^{2}+2 X+1$, which simplifies to $X^{2} \geq 2$
So $\mathrm{P}(2 X+3 \leq Y)=\mathrm{P}\left(X^{2} \geq 2\right)=2 a=0.2$

6 a $\mathrm{E}(Y)=\mathrm{E}(1-2 X)=1-2 \mathrm{E}(X)$
So $-5.6=1-2 \mathrm{E}(X)$
$2 \mathrm{E}(X)=6.6$
$\mathrm{E}(X)=3.3$
Alternatively:

$$
\begin{aligned}
& Y=1-2 X \Rightarrow X=\frac{1}{2}-\frac{Y}{2} \\
& E(X)=E\left(\frac{1}{2}-\frac{Y}{2}\right)=\frac{1}{2}-\frac{1}{2} E(Y)=0.5-(-2.8)=3.3
\end{aligned}
$$

b The sum of probabilities sum to 1 , so:

$$
\begin{align*}
& a+a+a+b+b+c=1 \\
& \Rightarrow 3 a+2 b+c=1 \tag{1}
\end{align*}
$$

$\mathrm{E}(X)=3.3$, from part a, so:
$1 \times a+2 \times a+3 \times a+4 \times b+5 \times b+6 \times c=3.3$
$\Rightarrow 6 a+9 b+6 c=3.3$
$\Rightarrow 2 a+3 b+2 c=1.1$
$\mathrm{P}(Y \leq-5)=0.6$ and as $\mathrm{P}(Y \leq-5)=\mathrm{P}(X \geq 3)$, this gives:
$a+2 b+c=0.6$
c $(\mathbf{1})-(\mathbf{3}) \Rightarrow 2 a=0.4, a=0.2$
$2 \times(\mathbf{3}) \Rightarrow 2 a+4 b+2 c=1.2$
(4) $-\mathbf{(2)} \Rightarrow \quad b=0.1$

Substitute a and b into equation (3):
$0.2+0.2+c=0.6 \Rightarrow c=0.2$
Solution:

$$
a=0.2, \quad b=0.1, c=0.2
$$

d $X>5+Y \Rightarrow X>5+1-2 X \quad$ as $Y=1-2 X$
$\Rightarrow 3 X>6 \Rightarrow X>2$

$$
\text { So } \begin{aligned}
P(X>5+Y) & =P(X>2) \\
& =a+2 b+c=0.2+2 \times 0.1+0.2=0.6
\end{aligned}
$$

