Discrete random variables, 1C

1 a The probability distribution for Y where Y = 2X - 3 is:

y	-1	1	3	5
P(Y=y)	0.1	0.3	0.2	0.4

b
$$E(Y) = \sum yP(Y = y)$$

 $= -1 \times 0.1 + 1 \times 0.3 + 3 \times 0.2 + 5 \times 0.4$
 $= -0.1 + 0.3 + 0.6 + 2$
 $= 2.8$
c $E(X) = \sum xP(X = x)$
 $= 1 \times 0.1 + 2 \times 0.3 + 3 \times 0.2 + 4 \times 0.4$
 $= 0.1 + 0.6 + 0.6 + 1.6$
 $= 2.9$

$$E(2X-3) = E(Y) = 2.8$$

 $2E(X)-3 = 2 \times 2.9 - 3 = 5.8 - 3 = 2.8$

So
$$E(2X-3) = 2E(X)-3$$

2 a The probability distribution for Y where $Y = X^3$ is:

y	-8	-1	0	1	8
P(Y=y)	0.1	0.1	0.2	0.4	0.2

b
$$E(Y) = \sum yP(Y = y)$$

= $-8 \times 0.1 + (-1) \times 0.1 + 0 \times 0.2 + 1 \times 0.4 + 8 \times 0.2$
= $-0.8 - 0.1 + 0 + 0.4 + 1.6$
= 1.1

3 **a**
$$E(8X) = 8E(X) = 8$$

b
$$E(X+3) = E(X) + 3 = 1 + 3 = 4$$

c
$$Var(X + 3) = Var(X) = 2$$

d
$$Var(3X) = 3^2 Var(X) = 3^2 \times 2 = 9 \times 2 = 18$$

e
$$Var(1-2X) = (-2)^2 Var(X) = 4 \times 2 = 8$$

f
$$Var(X) = E(X^2) - (E(X))^2$$

So $2 = E(X^2) - 1^2$

$$\Rightarrow F(X^2) = 3$$

$$\Rightarrow E(X^2) = 3$$

4 a
$$E(2X) = 2E(X) = 2 \times 3 = 6$$

b
$$E(3-4X) = 3-4E(X) = 3-4 \times 3 = -9$$

c
$$E(X^2 - 4X) = E(X^2) - E(4X)$$

= $E(X^2) - 4E(X)$
= $10 - 4 \times 3 = -2$

d
$$Var(X) = E(X^2) - (E(X))^2 = 10 - 3^2 = 1$$

e
$$Var(3X + 2) = 3^2Var(X) = 9Var(X) = 1$$

5 **a**
$$E(4X) = 4E(X) = 4\mu$$

b
$$E(2X+2) = 2E(X) + 2 = 2\mu + 2$$

$$\mathbf{c} \quad E(2X-2) = 2E(X) - 2 = 2\mu - 2$$

d The standard deviation of a random variable is the square root of its variance. So if the standard deviation is σ , the variance is σ^2 .

$$Var(2X + 2) = 2^2 Var(X) = 4\sigma^2$$

e
$$Var(2X-2) = 2^2 Var(X) = 4\sigma^2$$

6 a
$$E(X) = \frac{1}{6}(1+2+3+4+5+6) = \frac{21}{6} = 3.5$$

b
$$Y = 200 + 100X$$

c
$$E(Y) = E(200 + 100X) = 200 + 100E(X)$$

= $200 + 100 \times 3.5 = 200 + 350 = £550 = 200 + 350 = £550$

7 Assume the pizzas are cylindrical and that the amount of pizza dough is given by the volume of the cylinder. The volume of a cylinder is $\pi r^2 h$. The volumes of the different sizes of pizza are then:

Size	Small	Medium	Large
Radius (cm)	10	15	20
Volume (cm ³)	$\pi \times 10^2 \times 1 = 100\pi$	$\pi \times 15^2 \times 1 = 225\pi$	$\pi \times 20^2 \times 1 = 400\pi$

Let the amount of pizza dough be the discrete random variable V. The probability distribution for V is:

Size	Small	Medium	Large
v	100π	225π	400π
$\mathbf{P}(V=v)$	$\frac{3}{10}$	$\frac{9}{20}$	$\frac{5}{20}$

$$E(V) = \sum vP(V = v)$$

$$= 100\pi \times \frac{3}{10} + 225\pi \times \frac{9}{20} + 400\pi \times \frac{5}{20}$$

$$= (30 + 101.25 + 100)\pi = 231.25\pi$$

$$= 726.5 \text{ cm}^3 \text{ (1 d.p.)}$$

8 a This sample space diagram shows the 16 possible outcomes:

Difference between scores	1	2	3	4
1	0	1	2	3
2	1	0	1	2
3	2	1	0	1
4	3	2	1	0

Use the table to construct the probability distribution of *X*:

x	0	1	2	3
P(X=x)	$\frac{4}{16}$	$\frac{6}{16}$	$\frac{4}{16}$	$\frac{2}{16}$

$$E(X) = \sum x P(X = x)$$

$$= 0 \times \frac{4}{16} + 1 \times \frac{6}{16} + 2 \times \frac{4}{16} + 3 \times \frac{2}{16} = \frac{20}{16} = \frac{5}{4} = 1.25$$

$$E(X^{2}) = \sum x^{2} P(X = x)$$

$$= 0^{2} \times \frac{4}{16} + 1^{2} \times \frac{6}{16} + 2^{2} \times \frac{4}{16} + 3^{2} \times \frac{2}{16} = \frac{40}{16} = \frac{5}{2} = 2.5$$

$$Var(X) = E(X^{2}) - (E(X))^{2}$$

$$= 2.5 - (1.25)^{2} = 2.5 - 1.5625 = 0.9375$$

8 b The probability distribution for Y where $Y = 2^X$ is:

x	0	1	2	3
y	1	2	4	8
P(Y=y)	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{4}$	$\frac{1}{8}$

$$E(Y) = \sum y P(Y = y)$$

$$= 1 \times \frac{1}{4} + 2 \times \frac{3}{8} + 4 \times \frac{1}{4} + 8 \times \frac{1}{8} = \frac{24}{8} = 3$$

The probability distribution for *Z* where $Z = \frac{4X+1}{2}$ is:

x	0	1	2	3
z	0.5	2.5	4.5	6.5
$\mathbf{P}(\mathbf{Z}=\mathbf{z})$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{4}$	$\frac{1}{8}$

$$E(Z) = \sum z P(Z = z)$$

$$= 0.5 \times \frac{1}{4} + 2.5 \times \frac{3}{8} + 4.5 \times \frac{1}{4} + 6.5 \times \frac{1}{8}$$

$$= 0.125 + 0.9375 + 1.125 + 0.8125 = 3$$

So
$$E(Y) = E(Z) = 0.3$$

c
$$E(Z^2) = \sum z^2 P(Z = z)$$

= $(0.5)^2 \times \frac{1}{4} + (2.5)^2 \times \frac{3}{8} + (4.5)^2 \times \frac{1}{4} + (6.5)^2 \times \frac{1}{8}$
= $0.0625 + 2.34375 + 5.0625 + 5.28125 = 12.75$

$$Var(Z) = E(Z^2) - (E(Z))^2 = 12.75 - 3^2 = 3.75$$

Alternatively:

$$Z = \frac{4X+1}{2}$$
 \Rightarrow $Z = 2X+0.5$

$$Var(Z) = 2^2 Var(X) = 4 Var(X) = 4 \times 0.9375 = 3.75$$

Challenge

LHS = E(
$$(X - E(X))^2$$
)
= E($X^2 - 2XE(X) + (E(X))^2$)
= E(X^2) - E($2XE(X)$) + E($(E(X))^2$)
E(k) = k
so E($2XE(X)$) = $2E(X)E(X) = 2(E(X))^2$
and E($(E(X))^2$) = $(E(X))^2$

Substituting back into the equation above gives

LHS =
$$E(X^2) - E(2XE(X)) + E((E(X))^2)$$

= $E(X^2) - 2(E(X))^2 + (E(X))^2$
= $E(X^2) - (E(X))^2$
= RHS