Discrete random variables, 1C

1 a The probability distribution for Y where $Y=2 X-3$ is:

\boldsymbol{y}	-1	1	3	5
$\mathbf{P}(\boldsymbol{Y}=\boldsymbol{y})$	0.1	0.3	0.2	0.4

b $\mathrm{E}(Y)=\sum y \mathrm{P}(Y=y)$
$=-1 \times 0.1+1 \times 0.3+3 \times 0.2+5 \times 0.4$
$=-0.1+0.3+0.6+2$
$=2.8$
c $\mathrm{E}(X)=\sum x \mathrm{P}(X=x)$
$=1 \times 0.1+2 \times 0.3+3 \times 0.2+4 \times 0.4$
$=0.1+0.6+0.6+1.6$
$=2.9$
$\mathrm{E}(2 X-3)=\mathrm{E}(Y)=2.8$
$2 \mathrm{E}(X)-3=2 \times 2.9-3=5.8-3=2.8$
So $\mathrm{E}(2 X-3)=2 \mathrm{E}(X)-3$
2 a The probability distribution for Y where $Y=X^{3}$ is:

\boldsymbol{y}	-8	-1	0	1	8
$\mathbf{P}(\boldsymbol{Y}=\boldsymbol{y})$	0.1	0.1	0.2	0.4	0.2

b $\mathrm{E}(Y)=\sum y \mathrm{P}(Y=y)$

$$
\begin{aligned}
& =-8 \times 0.1+(-1) \times 0.1+0 \times 0.2+1 \times 0.4+8 \times 0.2 \\
& =-0.8-0.1+0+0.4+1.6 \\
& =1.1
\end{aligned}
$$

3 a $\mathrm{E}(8 X)=8 \mathrm{E}(X)=8$
b $\mathrm{E}(X+3)=\mathrm{E}(X)+3=1+3=4$
c $\operatorname{Var}(X+3)=\operatorname{Var}(X)=2$
d $\operatorname{Var}(3 X)=3^{2} \operatorname{Var}(X)=3^{2} \times 2=9 \times 2=18$
e $\operatorname{Var}(1-2 X)=(-2)^{2} \operatorname{Var}(X)=4 \times 2=8$
f $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}$
So $2=\mathrm{E}\left(X^{2}\right)-1^{2}$
$\Rightarrow \mathrm{E}\left(X^{2}\right)=3$
4 a $\mathrm{E}(2 X)=2 \mathrm{E}(X)=2 \times 3=6$
b $\mathrm{E}(3-4 X)=3-4 \mathrm{E}(X)=3-4 \times 3=-9$
c $\mathrm{E}\left(X^{2}-4 X\right)=\mathrm{E}\left(X^{2}\right)-\mathrm{E}(4 X)$

$$
=\mathrm{E}\left(X^{2}\right)-4 \mathrm{E}(X)
$$

$$
=10-4 \times 3=-2
$$

d $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}=10-3^{2}=1$
e $\operatorname{Var}(3 X+2)=3^{2} \operatorname{Var}(X)=9 \operatorname{Var}(X)=1$

5 a $\mathrm{E}(4 X)=4 \mathrm{E}(X)=4 \mu$
b $\mathrm{E}(2 X+2)=2 \mathrm{E}(X)+2=2 \mu+2$
c $\mathrm{E}(2 X-2)=2 \mathrm{E}(X)-2=2 \mu-2$
d The standard deviation of a random variable is the square root of its variance.
So if the standard deviation is σ, the variance is σ^{2}.
$\operatorname{Var}(2 X+2)=2^{2} \operatorname{Var}(X)=4 \sigma^{2}$
e $\operatorname{Var}(2 X-2)=2^{2} \operatorname{Var}(X)=4 \sigma^{2}$
6 a $\mathrm{E}(X)=\frac{1}{6}(1+2+3+4+5+6)=\frac{21}{6}=3.5$
b $Y=200+100 X$
c $\mathrm{E}(Y)=\mathrm{E}(200+100 X)=200+100 \mathrm{E}(X)$

$$
=200+100 \times 3.5=200+350=£ 550=200+350=£ 550
$$

7 Assume the pizzas are cylindrical and that the amount of pizza dough is given by the volume of the cylinder. The volume of a cylinder is $\pi r^{2} h$. The volumes of the different sizes of pizza are then:

Size	Small	Medium	Large
Radius (cm)	10	15	20
Volume (cm $\left.{ }^{3}\right)$	$\pi \times 10^{2} \times 1=100 \pi$	$\pi \times 15^{2} \times 1=225 \pi$	$\pi \times 20^{2} \times 1=400 \pi$

Let the amount of pizza dough be the discrete random variable V. The probability distribution for V is:

Size	Small	Medium	Large
\boldsymbol{v}	100π	225π	400π
$\mathbf{P}(\boldsymbol{V}=\boldsymbol{v})$	$\frac{3}{10}$	$\frac{9}{20}$	$\frac{5}{20}$

$$
\begin{aligned}
\mathrm{E}(V) & =\sum v \mathrm{P}(V=v) \\
& =100 \pi \times \frac{3}{10}+225 \pi \times \frac{9}{20}+400 \pi \times \frac{5}{20} \\
& =(30+101.25+100) \pi=231.25 \pi \\
& =726.5 \mathrm{~cm}^{3}(1 \text { d.p. })
\end{aligned}
$$

8 a This sample space diagram shows the 16 possible outcomes:

Difference between scores	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	0	1	2	3
$\mathbf{2}$	1	0	1	2
$\mathbf{3}$	2	1	0	1
$\mathbf{4}$	3	2	1	0

Use the table to construct the probability distribution of X :

\boldsymbol{x}	0	1	2	3
$\mathbf{P}(\boldsymbol{X}=\boldsymbol{x})$	$\frac{4}{16}$	$\frac{6}{16}$	$\frac{4}{16}$	$\frac{2}{16}$

$$
\begin{aligned}
\mathrm{E}(X) & =\sum x \mathrm{P}(X=x) \\
= & 0 \times \frac{4}{16}+1 \times \frac{6}{16}+2 \times \frac{4}{16}+3 \times \frac{2}{16}=\frac{20}{16}=\frac{5}{4}=1.25 \\
\mathrm{E}\left(X^{2}\right) & =\sum x^{2} \mathrm{P}(X=x) \\
& =0^{2} \times \frac{4}{16}+1^{2} \times \frac{6}{16}+2^{2} \times \frac{4}{16}+3^{2} \times \frac{2}{16}=\frac{40}{16}=\frac{5}{2}=2.5 \\
\operatorname{Var}(X) & =\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2} \\
& =2.5-(1.25)^{2}=2.5-1.5625=0.9375
\end{aligned}
$$

8 b The probability distribution for Y where $Y=2^{X}$ is:

\boldsymbol{x}	0	1	2	3
\boldsymbol{y}	1	2	4	8
$\mathbf{P}(\boldsymbol{Y}=\boldsymbol{y})$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{4}$	$\frac{1}{8}$

$$
\begin{aligned}
\mathrm{E}(Y) & =\sum y \mathrm{P}(Y=y) \\
& =1 \times \frac{1}{4}+2 \times \frac{3}{8}+4 \times \frac{1}{4}+8 \times \frac{1}{8}=\frac{24}{8}=3
\end{aligned}
$$

The probability distribution for Z where $Z=\frac{4 X+1}{2}$ is:

\boldsymbol{x}	0	1	2	3
\boldsymbol{z}	0.5	2.5	4.5	6.5
$\mathbf{P}(\boldsymbol{Z}=\boldsymbol{z})$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{4}$	$\frac{1}{8}$

$$
\begin{aligned}
\mathrm{E}(Z) & =\sum z \mathrm{P}(Z=z) \\
& =0.5 \times \frac{1}{4}+2.5 \times \frac{3}{8}+4.5 \times \frac{1}{4}+6.5 \times \frac{1}{8} \\
& =0.125+0.9375+1.125+0.8125=3
\end{aligned}
$$

So $\mathrm{E}(Y)=\mathrm{E}(Z)=0.3$
c $\mathrm{E}\left(Z^{2}\right)=\sum z^{2} \mathrm{P}(Z=z)$

$$
\begin{aligned}
& =(0.5)^{2} \times \frac{1}{4}+(2.5)^{2} \times \frac{3}{8}+(4.5)^{2} \times \frac{1}{4}+(6.5)^{2} \times \frac{1}{8} \\
& =0.0625+2.34375+5.0625+5.28125=12.75
\end{aligned}
$$

$\operatorname{Var}(Z)=\mathrm{E}\left(Z^{2}\right)-(\mathrm{E}(Z))^{2}=12.75-3^{2}=3.75$

Alternatively:
$Z=\frac{4 X+1}{2} \Rightarrow Z=2 X+0.5$
$\operatorname{Var}(Z)=2^{2} \operatorname{Var}(X)=4 \operatorname{Var}(X)=4 \times 0.9375=3.75$

Challenge

$$
\begin{aligned}
& \text { LHS }=\mathrm{E}\left((X-\mathrm{E}(X))^{2}\right) \\
&=\mathrm{E}\left(X^{2}-2 X \mathrm{E}(X)+(\mathrm{E}(X))^{2}\right) \\
&=\mathrm{E}\left(X^{2}\right)-\mathrm{E}(2 X \mathrm{E}(X))+\mathrm{E}\left((\mathrm{E}(X))^{2}\right) \\
& \mathrm{E}(k)=k \\
& \text { so } \mathrm{E}(2 X \mathrm{E}(X))=2 \mathrm{E}(X) \mathrm{E}(X)=2(\mathrm{E}(X))^{2} \\
& \text { and } \mathrm{E}\left((\mathrm{E}(\mathrm{X}))^{2}\right)=(\mathrm{E}(\mathrm{X}))^{2}
\end{aligned}
$$

Substituting back into the equation above gives

$$
\begin{aligned}
\mathrm{LHS} & =\mathrm{E}\left(X^{2}\right)-\mathrm{E}(2 X \mathrm{E}(X))+\mathrm{E}\left((\mathrm{E}(X))^{2}\right) \\
& =\mathrm{E}\left(X^{2}\right)-2(\mathrm{E}(X))^{2}+(\mathrm{E}(X))^{2} \\
& =\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2} \\
& =\text { RHS }
\end{aligned}
$$

