9 Mixed Exercise

1 a $\overrightarrow{A B}=\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)-\left(\begin{array}{c}1 \\ -1 \\ 3\end{array}\right)=\left(\begin{array}{c}0 \\ 3 \\ -1\end{array}\right)$
$\therefore \mathbf{r}=\left(\begin{array}{c}1 \\ -1 \\ 3\end{array}\right)+\lambda\left(\begin{array}{c}0 \\ 3 \\ -1\end{array}\right)=\mathbf{i}-\mathbf{j}+3 \mathbf{k}+\lambda(3 \mathbf{j}-\mathbf{k})$
b $\mathbf{c}=\overrightarrow{O A}+\frac{2}{3} \overrightarrow{A B}$

$$
\begin{aligned}
& =\left(\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right)+\frac{2}{3}\left(\begin{array}{c}
0 \\
3 \\
-1
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
\frac{7}{3}
\end{array}\right) \\
& =\mathbf{i}+\mathbf{j}+\frac{7}{3} \mathbf{k}
\end{aligned}
$$

$2 A(7,-1,2)$ and $B(-1,3,8)$
$\overrightarrow{A B}=\left(\begin{array}{c}-8 \\ 4 \\ 6\end{array}\right)=-2\left(\begin{array}{c}4 \\ -2 \\ -3\end{array}\right)$
$\therefore \mathbf{A}$ vector equation is
$\mathbf{r}=\left(\begin{array}{c}7 \\ -1 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}4 \\ -2 \\ -3\end{array}\right)$
$\therefore \frac{x-7}{4}=\frac{y+1}{-2}=\frac{z-2}{-3}$
$3(2 \mathbf{i}+3 \mathbf{j}-4 \mathbf{k})+\lambda(2 \mathbf{j}+3 \mathbf{k})$
4 a $\frac{x-3}{2}=\frac{y+2}{1}=\frac{z-1}{-1}$
b $\frac{0-3}{2}=\frac{a+2}{1}=\frac{b-1}{-1}$

$$
\Rightarrow a=-\frac{7}{2}, b=\frac{5}{2}
$$

5 Use the equation $\mathbf{r}=\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)+\lambda\left(\begin{array}{c}3 \\ 1 \\ -2\end{array}\right)$
When $\lambda=2, \mathbf{r}=\left(\begin{array}{c}7 \\ 4 \\ -5\end{array}\right)$, so the point $(7,4,-5)$ lies on l $\left(\begin{array}{c}9 \\ 3 \\ -6\end{array}\right)=3\left(\begin{array}{c}3 \\ 1 \\ -2\end{array}\right)$ so these two vectors are parallel.
So an alternative form of the equation is $\mathbf{r}=\left(\begin{array}{c}7 \\ 4 \\ -5\end{array}\right)+\lambda\left(\begin{array}{c}9 \\ 3 \\ -6\end{array}\right)$
$\begin{aligned} & 6\end{aligned} \mathbf{a} \quad \mathbf{r}=\left(\begin{array}{c}-2 \\ 2 \\ -3\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 3 \\ 4\end{array}\right)$
b Set $\lambda=2$
7 a $\overrightarrow{A B}=\left(\begin{array}{c}-1 \\ 4 \\ -3\end{array}\right), \overrightarrow{A C}=\left(\begin{array}{l}2 \\ 3 \\ 3\end{array}\right)$

$$
\therefore \mathbf{r}=\left(\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right)+\lambda\left(\begin{array}{c}
-1 \\
4 \\
-3
\end{array}\right)+\mu\left(\begin{array}{l}
2 \\
3 \\
3
\end{array}\right)
$$

$\mathbf{b}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}2 \\ -1 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ 4 \\ -3\end{array}\right)+\mu\left(\begin{array}{l}2 \\ 3 \\ 3\end{array}\right)$

$$
\begin{equation*}
x-2=-\lambda+2 \mu \tag{1}
\end{equation*}
$$

$y+1=4 \lambda+3 \mu$
$z-2=-3 \lambda+3 \mu$
(3) $-(2): z-y-3=-7 \lambda \Rightarrow \lambda=\frac{y-z+3}{7}$
$\Rightarrow \mu=\frac{3 y+4 z-5}{21}$
Into (1):

$$
\begin{aligned}
& x-2=-\frac{y+3-z}{7}+2\left(\frac{3 y+4 z-5}{21}\right) \\
& \Rightarrow 21(x-2)=-3(y+3-z)+2(3 y+4 z-5) \\
& \Rightarrow 21 x-3 y-11 z=23
\end{aligned}
$$

8 Three points on the plane are $A(6,0,0), B(8,-3,0)$ and $C(10,0,3)$
$\overrightarrow{A B}=\left(\begin{array}{c}2 \\ -3 \\ 0\end{array}\right), \overrightarrow{A C}=\left(\begin{array}{l}4 \\ 0 \\ 3\end{array}\right)$
$\therefore \mathbf{r}=\left(\begin{array}{l}6 \\ 0 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -3 \\ 0\end{array}\right)+\mu\left(\begin{array}{l}4 \\ 0 \\ 3\end{array}\right)$

9 a $\overrightarrow{M L}=\left(\begin{array}{l}4 \\ 7 \\ 7\end{array}\right)-\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)=\left(\begin{array}{l}3 \\ 4 \\ 5\end{array}\right)$

$$
\overrightarrow{M N}=\left(\begin{array}{l}
2 \\
4 \\
6
\end{array}\right)-\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
4
\end{array}\right)
$$

b $\frac{\overrightarrow{M L} \cdot \overrightarrow{M N}}{|\overrightarrow{M L}||\overrightarrow{M N}|}=\frac{27}{5 \sqrt{2} 3 \sqrt{2}}=\frac{9}{10}$
$\mathbf{1 0} \mathbf{a} \mathbf{a}=\left(\begin{array}{c}9 \\ -2 \\ 1\end{array}\right), \mathbf{b}=\left(\begin{array}{l}6 \\ 2 \\ 6\end{array}\right), \mathbf{c}=\left(\begin{array}{c}3 \\ p \\ q\end{array}\right)$

$$
\mathbf{b}-\mathbf{a}=\left(\begin{array}{l}
6 \\
2 \\
6
\end{array}\right)-\left(\begin{array}{c}
9 \\
-2 \\
1
\end{array}\right)=\left(\begin{array}{c}
-3 \\
4 \\
5
\end{array}\right)
$$

Equation of l :

$$
\mathbf{r}=\left(\begin{array}{c}
9 \\
-2 \\
1
\end{array}\right)+\mu\left(\begin{array}{c}
-3 \\
4 \\
5
\end{array}\right)
$$

b Since C lies on l,

$$
\begin{aligned}
& \left(\begin{array}{l}
3 \\
p \\
q
\end{array}\right)=\left(\begin{array}{c}
9 \\
-2 \\
1
\end{array}\right)+\mu\left(\begin{array}{c}
-3 \\
4 \\
5
\end{array}\right) \\
& 3=9-3 \mu \\
& 3 \mu=6 \\
& \mu=2
\end{aligned}
$$

So $p=-2+4 \mu=6$ and $q=1+5 \mu=11$
$10 \mathrm{c} \quad \cos \theta=\frac{\mathbf{O C} \cdot \mathbf{A B}}{|\mathbf{O C}||\mathbf{A B}|}$

$$
\text { OC. } \mathbf{A B}=\left(\begin{array}{c}
3 \\
6 \\
11
\end{array}\right) \cdot\left(\begin{array}{c}
-3 \\
4 \\
5
\end{array}\right)=-9+24+55=70
$$

$$
|\mathbf{O C}|=\sqrt{3^{2}+6^{2}+11^{2}}=\sqrt{166}
$$

$$
|\mathbf{A B}|=\sqrt{(-3)^{2}+4^{2}+5^{2}}=\sqrt{50}
$$

$$
\cos \theta=\frac{70}{\sqrt{166} \sqrt{50}}
$$

$$
\theta=39.8^{\circ}(1 \mathrm{~d} . \mathrm{p} .)
$$

d If $\mathbf{O D}$ and $\mathbf{A B}$ are perpendicular, $\mathbf{d} \cdot(\mathbf{b}-\mathrm{a})=0$
Since dies on $\mathbf{A B}$, use $\mathbf{d}=\left(\begin{array}{c}9-3 \mu \\ -2+4 \mu \\ 1+5 \mu\end{array}\right)$
$\left(\begin{array}{c}9-3 \mu \\ -2+4 \mu \\ 1+5 \mu\end{array}\right) \cdot\left(\begin{array}{c}-3 \\ 4 \\ 5\end{array}\right)=0$
$-3(9-3 \mu)+4(-2+4 \mu)+5(1+5 \mu)=0$
$-27+9 \mu-8+16 \mu+5+25 \mu=0$
$50 \mu=30$
$\mu=\frac{3}{5}$

$$
\mathbf{d}=\left(\begin{array}{c}
9-\frac{9}{5} \\
-2+\frac{12}{5} \\
1+3
\end{array}\right)=\frac{36}{5} \mathbf{i}+\frac{2}{5} \mathbf{j}+4 \mathbf{k}
$$

11 a $\overrightarrow{A B}=\left(\begin{array}{c}5 \\ 0 \\ -3\end{array}\right)-\left(\begin{array}{c}1 \\ 2 \\ -3\end{array}\right)=\left(\begin{array}{c}4 \\ -2 \\ 0\end{array}\right)$
$\therefore \mathbf{r}=\left(\begin{array}{c}1 \\ 2 \\ -3\end{array}\right)+\mu\left(\begin{array}{c}4 \\ -2 \\ 0\end{array}\right)$
b $\operatorname{Set} \mu=-3$
$11 \mathbf{c}$ Let $\mathbf{a}=\left(\begin{array}{c}4 \\ -2 \\ 0\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right)$

$$
\begin{aligned}
& \mathbf{a} \cdot \mathbf{b}=\left(\begin{array}{c}
4 \\
-2 \\
0
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right)=4+4+0=8 \\
& |\mathbf{a}|=\sqrt{4^{2}+(-2)^{2}}=\sqrt{20} \\
& |\mathbf{b}|=\sqrt{1^{2}+(-2)^{2}+2^{2}}=3 \\
& \therefore \cos \theta=\frac{8}{3 \sqrt{20}} \\
& \Rightarrow \theta=53.4^{\circ}
\end{aligned}
$$

d Let G be a general point on l_{1}

$$
\overrightarrow{\mathbf{C G}}=\left(\begin{array}{c}
1+4 \mu \\
-2-2 \mu \\
2
\end{array}\right)
$$

When \mathbf{C} is closest to $l_{1}, \overrightarrow{\mathbf{C G}}$ is
perpendicular to l_{1}.
$\therefore\left(\begin{array}{c}1+4 \mu \\ -2-2 \mu \\ 2\end{array}\right) \cdot\left(\begin{array}{c}4 \\ -2 \\ 0\end{array}\right)=0$
$\Rightarrow \mu=-\frac{2}{5}$
$\therefore \overrightarrow{\mathbf{C G}}=\left(\begin{array}{c}-\frac{3}{5} \\ -\frac{6}{5} \\ 2\end{array}\right)$
$\Rightarrow|\overrightarrow{\mathbf{C G}}|=\sqrt{\left(-\frac{3}{5}\right)^{2}+\left(-\frac{6}{5}\right)^{2}+2^{2}}=\frac{\sqrt{145}}{5}$

12 a Line $l_{1}: \mathbf{r}=\left(\begin{array}{c}3 \\ 4 \\ -5\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right)$
Line $l_{2}: \mathbf{r}=\left(\begin{array}{c}9 \\ 1 \\ -2\end{array}\right)+\mu\left(\begin{array}{c}4 \\ 1 \\ -1\end{array}\right)$
Using the direction vectors:
$\left(\begin{array}{c}1 \\ -2 \\ 2\end{array}\right) \cdot\left(\begin{array}{c}4 \\ 1 \\ -1\end{array}\right)=4-2-2=0$
Since the scalar product is zero, the directions are perpendicular.
b At an intersection point: $\left(\begin{array}{c}3+\lambda \\ 4-2 \lambda \\ -5+2 \lambda\end{array}\right)=\left(\begin{array}{c}9+4 \mu \\ 1+\mu \\ -2-\mu\end{array}\right)$

$$
\begin{align*}
& 3+\lambda=9+4 \mu \\
& 4-2 \lambda=1+\mu \\
& 6+2 \lambda=18+8 \mu \\
& 4-2 \lambda=1+\mu \\
& \text { Adding: } 10=19+9 \mu \\
& \Rightarrow 9 \mu=-9 \\
& \Rightarrow \mu=-1 \\
& 3+\lambda=9-4 \\
& \Rightarrow \lambda=2
\end{align*}
$$

Intersection point: $\left(\begin{array}{c}3+\lambda \\ 4-2 \lambda \\ -5+2 \lambda\end{array}\right)=\left(\begin{array}{c}5 \\ 0 \\ -1\end{array}\right)$
Position vector of \mathbf{A} is a $=5 \mathbf{i}-\mathbf{k}$.
c Position vector of $\mathbf{B}: \mathbf{b}=10 \mathbf{j}-11 \mathbf{k}=\left(\begin{array}{c}0 \\ 10 \\ -11\end{array}\right)$
For l_{1}, to give zero as the x component, $\lambda=-3$.

$$
\mathbf{r}=\left(\begin{array}{c}
3 \\
4 \\
-5
\end{array}\right)-3\left(\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right)=\left(\begin{array}{c}
0 \\
10 \\
-11
\end{array}\right)
$$

So \mathbf{B} lies on l_{1}.

For l_{2}, to give -11 as the z component, $\mu=9$.
$\mathbf{r}=\left(\begin{array}{c}9 \\ 1 \\ -2\end{array}\right)+9\left(\begin{array}{c}4 \\ 1 \\ -1\end{array}\right)=\left(\begin{array}{c}45 \\ 10 \\ -11\end{array}\right)$
So \mathbf{B} does not lie on l_{2}.
So Only one of the submarines passes through B.
$12 \mathbf{d}|\mathbf{A B}|=\sqrt{(0-5)^{2}+(10-0)^{2}+[-11-(-1)]^{2}}$

$$
=\sqrt{(-5)^{2}+10^{2}+(-10)^{2}}
$$

$$
=\sqrt{225}=15
$$

Since 1 unit represents 100 m , the distance $\mathbf{A B}$ is $15 \times 100=1500 \mathrm{~m}=1.5 \mathrm{~km}$.

13 Let A and B be general points on l_{1} and l_{2} respectively.
$\therefore \overrightarrow{A B}=\left(\begin{array}{c}6+t \\ -2-2 t-s \\ t\end{array}\right)$
$\overrightarrow{A B}$ is perpendicular to l_{1}
$\therefore\left(\begin{array}{c}6+t \\ -2-2 t-s \\ t\end{array}\right) \cdot\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=0$
$\Rightarrow-2-2 t-s=0$
$\overrightarrow{A B}$ is perpendicular to l_{2}

$$
\begin{aligned}
& \left(\begin{array}{c}
6+t \\
-2-2 t-s \\
t
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)=0 \\
& \Rightarrow 10+6 t+2 s=0
\end{aligned}
$$

Solving these simultaneous equations:

$$
\begin{aligned}
& s=4, \mathrm{t}=-3 \\
& \therefore \overrightarrow{A B}=\left(\begin{array}{c}
3 \\
0 \\
-3
\end{array}\right) \\
& \Rightarrow \mid \overrightarrow{A B}=\sqrt{3^{2}+(-3)^{2}}=\sqrt{18}=3 \sqrt{2}=4.24 \text { (3 s.f.) }
\end{aligned}
$$

14 Let A and B be general points on l_{1} and l_{2} respectively.
$\therefore \overrightarrow{A B}=\left(\begin{array}{c}6+t-3 s \\ -2+2 t+s \\ -s\end{array}\right)$
$\overrightarrow{A B}$ is perpendicular to l_{1}
$\therefore\left(\begin{array}{c}6+t-3 s \\ -2+2 t+s \\ -s\end{array}\right) \cdot\left(\begin{array}{c}3 \\ -1 \\ 1\end{array}\right)=0$
$\Rightarrow 20+t-11 s=0$
$\overrightarrow{A B}$ is perpendicular to l_{2}
$\left(\begin{array}{c}6+t-3 s \\ -2+2 t+s \\ -s\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)=0$
$\Rightarrow 2+5 t-s=0$
Solving these simultaneous equations:

$$
\begin{aligned}
& s=\frac{49}{27}, \mathrm{t}=-\frac{1}{27} \\
& \therefore \overrightarrow{A B}=\left(\begin{array}{c}
\frac{14}{27} \\
-\frac{7}{27} \\
-\frac{49}{27}
\end{array}\right) \\
& \Rightarrow|\overrightarrow{A B}|=\sqrt{\left(\frac{14}{27}\right)^{2}+\left(-\frac{7}{27}\right)^{2}+\left(-\frac{49}{27}\right)^{2}}=\sqrt{\frac{2646}{729}}=\sqrt{\frac{294}{81}}=\frac{7 \sqrt{6}}{9}=1.91 \text { (3 s.f.) }
\end{aligned}
$$

15a $\mathbf{r}=\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right)$ and $\mathbf{a}=\left(\begin{array}{l}4 \\ 3 \\ 1\end{array}\right)$
When $\lambda=0, \mathbf{r}=\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right)$
When $\lambda=1, \mathbf{r}=\left(\begin{array}{c}3 \\ 1 \\ -3\end{array}\right)$
So the position vectors $\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right),\left(\begin{array}{c}3 \\ 1 \\ -3\end{array}\right)$ and $\left(\begin{array}{l}4 \\ 3 \\ 1\end{array}\right)$ all lie on the plane
Suppose the plane has equation $a x+b y+c z=1$
Substituting each of the coordinates into this equation gives:

$$
\begin{aligned}
& a+b-2 c=1 \\
& 3 a+b-3 c=1 \\
& 4 a+3 b+c=1
\end{aligned}
$$

Solving these equations simultaneously gives:

$$
a=-\frac{2}{15}, b=\frac{9}{15}, c=-\frac{4}{15}
$$

Therefore the equation of the plane is

$$
-\frac{2}{15} x+\frac{9}{15} y-\frac{4}{15} z=1
$$

or $2 x-9 y+4 z=-15$
So the required equation is $\mathbf{r} .\left(\begin{array}{c}2 \\ -9 \\ 4\end{array}\right)=-15$
$\mathbf{1 5} \mathbf{b} \mathbf{r}=\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ 1 \\ -3\end{array}\right)$ and $\mathbf{a}=\left(\begin{array}{l}3 \\ 5 \\ 1\end{array}\right)$
When $\lambda=0, \mathbf{r}=\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$
When $\lambda=1, \mathbf{r}=\left(\begin{array}{c}3 \\ 3 \\ -1\end{array}\right)$
So the position vectors $\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right),\left(\begin{array}{c}3 \\ 3 \\ -1\end{array}\right)$ and $\left(\begin{array}{l}3 \\ 5 \\ 1\end{array}\right)$ all lie on the plane
Suppose the plane has equation $a x+b y+c z=1$
Substituting each of the coordinates into this equation gives:

$$
\begin{aligned}
& a+2 b+2 c=1 \\
& 3 a+3 b-c=1 \\
& 3 a+5 b+c=1
\end{aligned}
$$

Solving these equations simultaneously gives:
$a=1, b=-\frac{1}{2}, c=\frac{1}{2}$

Therefore the equation of the plane is

$$
x-\frac{1}{2} y+\frac{1}{2} z=1
$$

or $2 x-y+z=2$
So the required equation is $\mathbf{r} .\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)=2$
$\mathbf{1 5} \mathbf{c} \quad \mathbf{r}=\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$ and $\mathbf{a}=\left(\begin{array}{l}7 \\ 8 \\ 6\end{array}\right)$
When $\lambda=0, \mathbf{r}=\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right)$
When $\lambda=1, \mathbf{r}=\left(\begin{array}{l}3 \\ 1 \\ 3\end{array}\right)$
So the position vectors $\left(\begin{array}{c}2 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{l}3 \\ 1 \\ 3\end{array}\right)$ and $\left(\begin{array}{l}7 \\ 8 \\ 6\end{array}\right)$ all lie on the plane
Suppose the plane has equation $a x+b y+c z=1$
Substituting each of the coordinates into this equation gives:
$2 a-b+c=1$
$3 a+b+3 c=1$
$7 a+8 b+6 c=1$

Solving these equations simultaneously gives:
$a=\frac{8}{22}, b=-\frac{5}{22}, c=\frac{1}{22}$

Therefore the equation of the plane is
$\frac{8}{22} x-\frac{5}{22} y+\frac{1}{22} z=1$
or $8 x-5 y+z=22$
So the required equation is $\mathbf{r} .\left(\begin{array}{c}8 \\ -5 \\ 1\end{array}\right)=22$

16 The line is in the direction $3 \mathbf{i}+\mathbf{j}+2 \mathbf{k}$. This lies in the plane.
$(2,-4,1)$ is a point on the line. This also lies in the plane, as does the point $(1,1,1)$.
$\therefore\left(\begin{array}{c}2 \\ -4 \\ 1\end{array}\right)-\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{c}1 \\ -5 \\ 0\end{array}\right)$ is a direction in the plane. $\quad \begin{aligned} & \text { First obtain the equation of the } \\ & \text { plane in the form, } \mathbf{r} \cdot \mathbf{n}=\mathbf{a} \cdot \mathbf{n}, \text { then } \\ & \text { convert to Cartesian form. }\end{aligned}$
Let $\mathbf{n}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ be perpendicular to the plane
So $\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right) \cdot\left(\begin{array}{l}\mathbf{a} \\ \mathbf{b} \\ \mathbf{c}\end{array}\right)=0$ and $\left(\begin{array}{c}1 \\ -5 \\ 0\end{array}\right) \cdot\left(\begin{array}{l}\mathbf{a} \\ \mathbf{b} \\ \mathbf{c}\end{array}\right)=0$
Therefore $3 a+b+2 c=0$ and $a-5 b=0$
Choosing $a=5$ gives $b=1$ and $c=-8$
Therefore a normal vector is given by $\left(\begin{array}{c}5 \\ 1 \\ -8\end{array}\right)$
\therefore The equation of the plane is
$\mathbf{r} \cdot(5 \mathbf{i}+\mathbf{j}-8 \mathbf{k})=(\mathbf{i}+\mathbf{j}+\mathbf{k}) \cdot(5 \mathbf{i}+\mathbf{j}-8 \mathbf{k})$
i.e: $5 x+y-8 z=-2$

This is a Cartesian equation of the plane.
$\mathbf{1 7} \mathbf{a} \quad \overrightarrow{\mathbf{A B}}=\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)$ and $\overrightarrow{\mathbf{A C}}=\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right)$
Let $\mathbf{n}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ be perpendicular to the plane
Then \mathbf{n} is perpendicular to both $\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)$ and $\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right)$
So $\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right) \cdot\left(\begin{array}{l}\mathbf{a} \\ \mathbf{b} \\ \mathbf{c}\end{array}\right)=0$ and $\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right) \cdot\left(\begin{array}{l}\mathbf{a} \\ \mathbf{b} \\ \mathbf{c}\end{array}\right)=0$
Therefore $2 a-2 b+c=0$ and $a+b-2 c=0$
Choosing $a=1$ gives $b-2 c=-1$ and $-2 b+c=-2$
Solving simultaneously gives $b=\frac{5}{3}$ and $c=\frac{4}{3}$
Therefore a normal vector is given by $\left(\begin{array}{l}1 \\ \frac{5}{3} \\ \frac{4}{3}\end{array}\right)$, or $\left(\begin{array}{l}3 \\ 5 \\ 4\end{array}\right)$
Therefore a unit vector normal to the plane is $\frac{1}{\sqrt{3^{2}+5^{2}+4^{2}}}(3 \mathbf{i}+5 \mathbf{j}+4 \mathbf{k})$

$$
=\frac{1}{\sqrt{50}}(3 \mathbf{i}+5 \mathbf{j}+4 \mathbf{k})
$$

b The equation of the plane may be written as

$$
\begin{aligned}
\mathbf{r} \cdot(3 \mathbf{i}+5 \mathbf{j}+4 \mathbf{k}) & =(\mathbf{i}+3 \mathbf{j}+3 \mathbf{k}) \cdot(3 \mathbf{i}+5 \mathbf{j}+4 \mathbf{k}) \\
& =3+15+12 \\
& =30
\end{aligned}
$$

i.e. $3 x+5 y+4 z=30$
c The perpendicular distance from the origin to the plane is

$$
\frac{30}{\sqrt{3^{2}+5^{2}+4^{2}}}=\frac{30}{\sqrt{50}}=\frac{30 \sqrt{50}}{50}=3 \sqrt{2} .
$$

18 a The plane with vector equation
$\mathbf{r}=\mathbf{i}+s \mathbf{j}+t(\mathbf{i}-\mathbf{k})$
is perpendicular to $\mathbf{i}+\mathbf{k}$, as $(\mathbf{i}+\mathbf{k}) \cdot \mathbf{j}=0$ and $(\mathbf{i}+\mathbf{k}) \cdot(\mathbf{i}-\mathbf{k})=1-1=0$
The plane also has equation
$\mathbf{r} \cdot(\mathbf{i}+\mathbf{k})-\mathbf{i} \cdot(\mathbf{i}+\mathbf{k})$, as \mathbf{i} is the position vector of a point on the plane.
i.e. $\mathbf{r} \cdot(\mathbf{i}+\mathbf{k})=1$
b The perpendicular distance from the origin to this plane is $\frac{1}{\sqrt{1^{2}+1^{2}}}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$ or 0.707 (3 s.f.)
c The Cartesian form of the equation of the plane is $x+z=1$.

19a $\quad \overrightarrow{\mathbf{A B}}=\overrightarrow{\mathbf{O B}}-\overrightarrow{\mathbf{O A}}=(5 \mathbf{i}-2 \mathbf{j}+\mathbf{k})-(\mathbf{i}+\mathbf{j}+\mathbf{k})$

$$
=4 \mathbf{i}-3 \mathbf{j}
$$

$\overrightarrow{\mathbf{A C}}=\overrightarrow{\mathbf{O C}}-\overrightarrow{\mathbf{O A}}=(3 \mathbf{i}+2 \mathbf{j}+6 \mathbf{k})-(\mathbf{i}+\mathbf{j}+\mathbf{k})$

$$
=2 \mathbf{i}+\mathbf{j}+5 \mathbf{k}
$$

$\overrightarrow{\mathbf{A B}}=\left(\begin{array}{c}4 \\ -3 \\ 0\end{array}\right)$ and $\overrightarrow{\mathbf{A C}}=\left(\begin{array}{l}2 \\ 1 \\ 5\end{array}\right)$
Let $\mathbf{n}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ be perpendicular to the plane
So $\left(\begin{array}{c}4 \\ -3 \\ 0\end{array}\right) \cdot\left(\begin{array}{l}\mathbf{a} \\ \mathbf{b} \\ \mathbf{c}\end{array}\right)=0$ and $\left(\begin{array}{c}2 \\ 1 \\ 5\end{array}\right) \cdot\left(\begin{array}{l}\mathbf{a} \\ \mathbf{b} \\ \mathbf{c}\end{array}\right)=0$
Therefore $4 a-3 b=0$ and $2 a+b+5 c=0$
Choosing $a=3$ gives $b=4$ and $c=-2$
Therefore a normal vector is given by $\left(\begin{array}{c}3 \\ 4 \\ -2\end{array}\right)$
Or any multiple of $3 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k}$
b An equation of the plane containing \mathbf{A}, \mathbf{B} and \mathbf{C} is
$\mathbf{r} \cdot(3 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k})=(\mathbf{i}+\mathbf{j}+\mathbf{k}) \cdot(3 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k})$
i.e. $3 x+4 y-2 z-5=0$
$20 \mathbf{a} \quad(2 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k}) \cdot(\mathbf{i}+5 \mathbf{j}+3 \mathbf{k})=2-10+9$

$$
=1
$$

$\therefore(2,-2,3)$ lies on the plane Π_{2}
b $(2 \mathbf{i}-\mathbf{j}+\mathbf{k}) \cdot(\mathbf{i}+5 \mathbf{j}+3 \mathbf{k})=2-5+3$

$$
=0
$$

\therefore the normal to plane Π_{1} is perpendicular to the normal to plane Π_{2}.
$\therefore \Pi_{1}$ is perpendicular to Π_{2}.
c $\mathbf{r}=2 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k}+\lambda(2 \mathbf{i}-\mathbf{j}+\mathbf{k})$
d This line meets the plane Π_{1} when
$[(2+2 \lambda) \mathbf{i}+(-2-\lambda) \mathbf{j}+(3+\lambda) \mathbf{k}] \cdot(2 \mathbf{i}-\mathbf{j}+\mathbf{k})=0$
i.e. $4+4 \lambda+2+\lambda+3+\lambda=0$
i.e. $6 \lambda+9=0$
$\therefore \lambda=-\frac{3}{2}$
Substitute $\therefore \lambda=-\frac{3}{2}$ into the equation of the line: then $\mathbf{r}=-\mathbf{i}-\frac{1}{2} \mathbf{j}+\frac{3}{2} \mathbf{k}$
i.e. The line meets Π_{1} at the point $\left(-1,-\frac{1}{2}, \frac{3}{2}\right)$
e The distance required is

$$
\begin{aligned}
\sqrt{(2-(-1))^{2}+\left(-2-\left(-\frac{1}{2}\right)\right)^{2}+\left(3-\frac{3}{2}\right)^{2}} & =\sqrt{9+2 \frac{1}{4}+2 \frac{1}{4}}=\sqrt{13 \frac{1}{2}} \\
& =3.67 \text { (3 s.f.) }
\end{aligned}
$$

$21 \mathbf{a} \quad l_{1}: \mathbf{r}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ 1 \\ -2\end{array}\right)=\left(\begin{array}{c}1+2 \lambda \\ 1+\lambda \\ -2 \lambda\end{array}\right)$ and $l_{2}: \mathbf{r}=\left(\begin{array}{c}1 \\ 4 \\ -4\end{array}\right)+\mu\left(\begin{array}{c}-3 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{c}1-3 \mu \\ 4 \\ -4+\mu\end{array}\right)$
If l_{1} and l_{2} intersect, then $\left(\begin{array}{c}1+2 \lambda \\ 1+\lambda \\ -2 \lambda\end{array}\right)=\left(\begin{array}{c}1-3 \mu \\ 4 \\ -4+\mu\end{array}\right)$
$1+2 \lambda=1-3 \mu$ (1)
$1+\lambda=4$
(2)

Equation (2) gives $\lambda=3$
Substituting into (1) gives $7=1-3 \mu$, so $\mu=-2$
Check for consistency: $-2 \lambda=-6$ and $-4+\mu=-6$
$2+4 \lambda=-5+2 \mu$, so these equations are consistent.
Therefore l_{1} and l_{2} intersect.

21 bubstitute $\lambda=3$ into line l_{1}, so $\mathbf{r}=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)+3\left(\begin{array}{c}2 \\ 1 \\ -2\end{array}\right)=\left(\begin{array}{c}7 \\ 4 \\ -6\end{array}\right)$
Therefore the position vector of their point of intersection is $\left(\begin{array}{c}7 \\ 4 \\ -6\end{array}\right)$
c The cosine of the acute angle θ between the lines is the cosine of the acute angle between their respective direction vectors.

$$
\begin{aligned}
& \left(\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right) \cdot\left(\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right)=(2 \times-3)+(1 \times 0)+(-2 \times 1)=-8 \\
& \left.\left(\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right) \right\rvert\,=\sqrt{2^{2}+1^{2}+(-2)^{2}}=\sqrt{9}=3 \text { and }\left|\left(\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right)\right|=\sqrt{(-3)^{2}+0^{2}+1^{2}}=\sqrt{10} \\
& \text { So } \cos \theta=\left|\frac{-8}{3 \sqrt{10}}\right|=\frac{8}{3 \sqrt{10}}
\end{aligned}
$$

Therefore $\cos \theta=\frac{8}{3 \sqrt{10}} \times \frac{\sqrt{10}}{\sqrt{10}}=\frac{8 \sqrt{10}}{30}=\frac{4 \sqrt{10}}{15}$, as required.
$2 \mathbf{2 a}\left(\begin{array}{l}6 \\ 8 \\ 5\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)=\left(\begin{array}{l}3 \\ a \\ 2\end{array}\right)$

$$
\lambda=-3 \Rightarrow a=11
$$

$\left(\begin{array}{l}6 \\ 8 \\ 5\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)=\left(\begin{array}{l}8 \\ 6 \\ b\end{array}\right)$
$\lambda=2 \Rightarrow b=7$
b $\left(\left(\begin{array}{l}6 \\ 8 \\ 5\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)\right) \cdot\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)=0$
$\Rightarrow\left(\begin{array}{l}6 \\ 8 \\ 5\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)=0$
$\Rightarrow 6-8+5+\lambda(1+1+1)=0$
$\Rightarrow \lambda=-1$
\therefore Position vector of \mathbf{P} is $\left(\begin{array}{l}6 \\ 8 \\ 5\end{array}\right)-\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)=\left(\begin{array}{l}5 \\ 9 \\ 4\end{array}\right)$
$\therefore \mathbf{P}(5,9,4)$
c $\sqrt{5^{2}+9^{2}+4^{2}}=\sqrt{122}$

23 a $\overrightarrow{\mathbf{A B}}=\left(\begin{array}{l}5 \\ 2 \\ 6\end{array}\right)-\left(\begin{array}{l}6 \\ 3 \\ 4\end{array}\right)=\left(\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right)$
b $\mathbf{r}=\left(\begin{array}{l}6 \\ 3 \\ 4\end{array}\right)+\lambda\left(\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right)$

23c $\quad \overrightarrow{\mathbf{C P}}=\left(\begin{array}{c}2-\lambda \\ -7-\lambda \\ 2+2 \lambda\end{array}\right)$

$$
\left(\begin{array}{c}
2-\lambda \\
-7-\lambda \\
2+2 \lambda
\end{array}\right) \cdot\left(\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right)=6 \lambda+9=0
$$

$\Rightarrow \lambda=-\frac{3}{2}$
\therefore The position vector of \mathbf{P} is

$$
\begin{aligned}
& \left(\begin{array}{l}
6 \\
3 \\
4
\end{array}\right)-\frac{3}{2}\left(\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right)=\left(\begin{array}{c}
\frac{15}{2} \\
\frac{9}{2} \\
1
\end{array}\right) \\
& \therefore \mathbf{P}\left(\frac{15}{2}, \frac{9}{2}, 1\right) \text { or } \mathbf{P}(7.5,4.5,1)
\end{aligned}
$$

$24 \mathbf{a}\left(\begin{array}{c}3+2 \lambda \\ -2+\lambda \\ 4-\lambda\end{array}\right)=\left(\begin{array}{c}1+\mu \\ 12-2 \mu \\ 8-\mu\end{array}\right)$
\mathbf{j} and \mathbf{k} components $\Rightarrow \lambda=2, \mu=6$
Check \mathbf{i} component: $3+2(2)=7=1+6$
So the equations are consistent
Therefore the lines meet, and they meet at

$$
\left(\begin{array}{c}
3+2(2) \\
-2+2 \\
4-2
\end{array}\right)=\left(\begin{array}{l}
7 \\
0 \\
2
\end{array}\right) \quad \therefore A(7,0,2)
$$

b Let $\mathbf{a}=\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)$ and $\mathbf{b}=\left(\begin{array}{c}1 \\ -2 \\ -1\end{array}\right)$

$$
\begin{aligned}
& \mathbf{a} \cdot \mathbf{b}=\left(\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right) \cdot\left(\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right)=2-2+1=1 \\
& |\mathbf{a}|=\sqrt{2^{2}+1^{2}+(-1)^{2}}=\sqrt{6} \\
& |\mathbf{b}|=\sqrt{6} \\
& \therefore \cos \theta=\frac{1}{6} \\
& \Rightarrow \theta=80.4^{\circ} \quad(1 \text { d.p. })
\end{aligned}
$$

c Set $\lambda=2$
$24 \mathbf{d}$ The shortest distance of \mathbf{B} to the line l_{2} is given by $\mathbf{d}=|\overrightarrow{\mathbf{B A}}| \sin \alpha$

$\overrightarrow{\mathbf{O A}}=\left(\begin{array}{l}7 \\ 0 \\ 2\end{array}\right)$ and $\overrightarrow{\mathbf{O B}}=\left(\begin{array}{c}5 \\ -1 \\ 3\end{array}\right)$
$\overrightarrow{\mathbf{B A}}=\overrightarrow{\mathbf{O A}}-\overrightarrow{\mathbf{O B}}=\left(\begin{array}{l}7 \\ 0 \\ 2\end{array}\right)-\left(\begin{array}{c}5 \\ -1 \\ 3\end{array}\right)=\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)$
$|\stackrel{\mathbf{B A}}{ }|=\sqrt{2^{2}+1^{2}+(-1)^{2}}=\sqrt{6}$
So $\mathbf{d}=\sqrt{6} \sin 80.4^{\circ}=2.42$

25a $\quad \overrightarrow{A P}=\mathbf{a}=\left(\begin{array}{c}3 \\ 0 \\ -3\end{array}\right)$

$$
\mathbf{n}=\left(\begin{array}{c}
2 \\
-2 \\
3
\end{array}\right)
$$

$$
\mathbf{a} \cdot \mathbf{n}=\left(\begin{array}{c}
3 \\
0 \\
-3
\end{array}\right) \cdot\left(\begin{array}{c}
2 \\
-2 \\
3
\end{array}\right)=-3
$$

$$
|\mathbf{a}|=\sqrt{3^{2}+(-3)^{2}}=\sqrt{18}
$$

$$
|\mathbf{n}|=\sqrt{2^{2}+(-2)^{2}+3^{2}}=\sqrt{17}
$$

$$
\therefore \sin \theta=\frac{|-3|}{\sqrt{18} \sqrt{17}}=\frac{3}{\sqrt{18} \sqrt{17}}
$$

$\Rightarrow \theta=10^{\circ}$ to the nearest degree
b $\frac{|1(2)+2(-2)+2(3)-1|}{\sqrt{2^{2}+(-2)^{2}+3^{2}}}=\frac{3}{\sqrt{17}}=\frac{3 \sqrt{17}}{17}$

26 a Let l_{1} denote the path of the first aeroplane, and l_{2} the second.
$l_{1}: \mathbf{r}=\left(\begin{array}{c}120 \\ -80 \\ 13\end{array}\right)+\lambda\left(\begin{array}{c}80 \\ 100 \\ -8\end{array}\right)$
$l_{2}: \mathbf{r}=\left(\begin{array}{c}-20 \\ 35 \\ 5\end{array}\right)+\mu\left(\begin{array}{c}10 \\ -2 \\ 0.1\end{array}\right)$
$\left(\begin{array}{c}120+80 \lambda \\ -80+100 \lambda \\ 13-8 \lambda\end{array}\right)=\left(\begin{array}{c}-20+10 \mu \\ 35-2 \mu \\ 5+0.1 \mu\end{array}\right)$
\mathbf{i} and \mathbf{k} components $\Rightarrow \lambda=\frac{3}{4}, \mu=20$
Check \mathbf{j} component: $-80+100\left(\frac{3}{4}\right)=-5=35-2(20)$
So the equations are consistent
Therefore the paths intersect, and they intersect at
$\left(\begin{array}{c}120 \\ -80 \\ 13\end{array}\right)+\frac{3}{4}\left(\begin{array}{c}80 \\ 100 \\ -8\end{array}\right)=\left(\begin{array}{c}180 \\ -5 \\ 7\end{array}\right) \Rightarrow(180,-5,7)$
b The planes pass through the same point, but not necessarily at the same time.

Challenge

1 a $-2(-2 x+y-3 z)=(-2) \times(-5)$ gives $4 x-2 y+6 z=10$
b matrix \mathbf{A} is singular if $\operatorname{det} \mathbf{A}=0$

$$
4(c+3 b)+2(-2 c+3 a)+6(-2 b-a)=6 a-6 a+12 b-12 b+4 c-4 c=0
$$

c i $a=2 n, b=-n, c=30$ where $n \in \mathbb{R}, n \neq 3$
ii $a=6, b=-3$ and $c=9$

Challenge

2 Coordinates $A(4,-4,5), B(0,4,1)$ and $C(0,0,5)$ lie on the circumference of the circle.
Let O be the centre of the circle.
Then A, B, C and O lie on the same plane.
Without loss of generality, suppose the plane has equation $a x+b y+c z=1$
Then substituting point A gives:
substituting point B gives:
substituting point C gives:
$4 a-4 b+5 c=1$
$4 b+c=1$

From equation (3),

$$
\begin{equation*}
5 c=1 \tag{1}
\end{equation*}
$$

Substituting into (2) gives

$$
\begin{equation*}
c=\frac{1}{5} \tag{2}
\end{equation*}
$$

$$
4 b+\frac{1}{5}=1
$$

$$
4 b=\frac{4}{5}
$$

$$
b=\frac{1}{5}
$$

Substituting b and c in equation (1) gives $4 a-\frac{4}{5}+\frac{5}{5}=1$

$$
\begin{aligned}
& 4 a=\frac{4}{5} \\
& a=\frac{1}{5}
\end{aligned}
$$

So the equation of the plane is

$$
\begin{align*}
& \frac{x}{5}+\frac{y}{5}+\frac{z}{5}=1 \\
& x+y+z=5 \tag{4}
\end{align*}
$$

Or
The centre of the circle lies on the intersection of any two perpendicular bisectors chosen from $A B$, $B C$ or $A C$.
Each perpendicular bisector must also lie on the plane $x+y+z=5$
To find the equation of the perpendicular bisector of $\mathbf{A B}$:
The mid-point of $\mathbf{A B}$ is $\mathbf{M}\left(\frac{4+0}{2}, \frac{-4+4}{2}, \frac{5+1}{2}\right)=\mathbf{M}(2,0,3)$
Therefore the equation of the line MO may be written as $\mathbf{r}=\left(\begin{array}{l}2 \\ 0 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right)$
$\overrightarrow{\mathbf{A B}}=\left(\begin{array}{c}-4 \\ 8 \\ 4\end{array}\right)$ and $\overrightarrow{\mathbf{A B}}$ is perpendicular to the direction of $\mathbf{M O}$, so $\overrightarrow{\mathbf{A B}} \cdot\left(\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right)=0$
i.e. $\left(\begin{array}{c}-4 \\ 8 \\ 4\end{array}\right) \cdot\left(\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right)=0$, so $-4 \alpha+8 \beta-4 \gamma=0$

The line $\mathbf{r}=\left(\begin{array}{l}2 \\ 0 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right)$ lies on the plane $x+y+z=5$ for all values of λ.
Choosing $\lambda=1$, you have $\mathbf{r}=\left(\begin{array}{c}2+\alpha \\ \beta \\ 3+\gamma\end{array}\right)$

Challenge

2 continued

Solving $\mathbf{r}=\left(\begin{array}{c}2+\alpha \\ \beta \\ 3+\gamma\end{array}\right)$ and $x+y+z=5$ simultaneously gives $(2+\alpha)+\beta+(3+\gamma)=5$, or
$\alpha+\beta+\gamma=0$
Equation (6) is equivalent to $4 \alpha+4 \beta+4 \gamma=0$
Adding this to equation (5) gives $12 \beta=0$, so $\beta=0$ and $\alpha=-\gamma$
Therefore $\mathbf{r}=\left(\begin{array}{c}2+\alpha \\ \beta \\ 3+\gamma\end{array}\right)=\left(\begin{array}{c}2+\alpha \\ 0 \\ 3-\alpha\end{array}\right)$
Now to find the equation of the perpendicular bisector of $\mathbf{B C}$:
The mid-point of $\mathbf{B C}$ is $\mathbf{M}_{1}\left(\frac{0+0}{2}, \frac{4+0}{2}, \frac{1+5}{2}\right)=\mathbf{M}_{1}(0,2,3)$
Therefore the equation of the line $\mathbf{M}_{1} \mathbf{O}$ may be written as $\mathbf{r}=\left(\begin{array}{l}0 \\ 2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}\alpha_{1} \\ \beta_{1} \\ \gamma_{1}\end{array}\right)$
$\overrightarrow{\mathbf{B C}}=\left(\begin{array}{c}0 \\ -4 \\ 4\end{array}\right)$ and $\overrightarrow{\mathbf{B C}}$ is perpendicular to the direction of $\mathbf{M}_{1} \mathbf{O}$, so $\overrightarrow{\mathbf{B C}} \cdot\left(\begin{array}{c}\alpha_{1} \\ \beta_{1} \\ \gamma_{1}\end{array}\right)=0$
i.e. $\left(\begin{array}{c}0 \\ -4 \\ 4\end{array}\right) \cdot\left(\begin{array}{l}\alpha_{1} \\ \beta_{1} \\ \gamma_{1}\end{array}\right)=0$, so $-4 \beta_{1}+4 \gamma_{1}=0$, or $\beta_{1}=\gamma_{1}$

The line $\mathbf{r}=\left(\begin{array}{l}0 \\ 2 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}\alpha_{1} \\ \beta_{1} \\ \gamma_{1}\end{array}\right)$ lies on the plane $x+y+z=5$ for all values of λ.
Choosing $\lambda=1$, you have $\mathbf{r}=\left(\begin{array}{c}\alpha_{1} \\ 2+\beta_{1} \\ 3+\gamma_{1}\end{array}\right)$
Solving $\mathbf{r}=\left(\begin{array}{c}\alpha_{1} \\ 2+\beta_{1} \\ 3+\gamma_{1}\end{array}\right)$ and $x+y+z=5$ simultaneously gives $\alpha_{1}+\left(2+\beta_{1}\right)+\left(3+\gamma_{1}\right)=5$, or
$\alpha_{1}+\beta_{1}+\gamma_{1}=0$
Solving equations (7) and (8) simultaneously gives $\alpha_{1}=-\beta_{1}-\gamma_{1}=-\gamma_{1}-\gamma_{1}=-2 \gamma_{1}$
Therefore $\mathbf{r}=\left(\begin{array}{c}\alpha_{1} \\ 2+\beta_{1} \\ 3+\gamma_{1}\end{array}\right)=\left(\begin{array}{c}-2 \gamma_{1} \\ 2+\gamma_{1} \\ 3+\gamma_{1}\end{array}\right)$

Challenge

2 continued

Now consider the equations of the two perpendicular bisectors:
$\mathbf{r}=\left(\begin{array}{c}2+\alpha \\ 0 \\ 3-\alpha\end{array}\right)$ and $\mathbf{r}=\left(\begin{array}{c}-2 \gamma_{1} \\ 2+\gamma_{1} \\ 3+\gamma_{1}\end{array}\right)$
These meet at the centre of the circle, O.
Equating the \mathbf{j} components gives $0=2+\gamma_{1}$, so $\gamma_{1}=-2$
Therefore the two bisectors must meet at the position vector $\mathbf{r}=\left(\begin{array}{l}-2(-2) \\ 2+(-2) \\ 3+(-2)\end{array}\right)=\left(\begin{array}{l}4 \\ 0 \\ 1\end{array}\right)$
The centre of the circle is therefore $O(4,0,1)$
The radius is the distance between O and any of the points A, B or C
Consider the point $C(0,0,5)$
Then $O C=\sqrt{(0-4)^{2}+(0-0)^{2}+(5-1)^{2}}=\sqrt{32}=4 \sqrt{2}$
Therefore the circle has radius $4 \sqrt{2}$

