Exercise 9F

1 Let A be a general point on the first line and B be a general point on the second line,
then $\overrightarrow{A B}=\left(\begin{array}{c}-2 \\ +2 \\ 0\end{array}\right)+t\left(\begin{array}{c}-3 \\ -4 \\ 5\end{array}\right)$, where $t=\mu-\lambda$.

Find the minimum value of the quadratic by using calculus, or completion of the square.

Let the distance $A B=x$
\qquad
then $x^{2}=(-2-3 t)^{2}+(2-4 t)^{2}+(5 t)^{2}=8-4 t+50 t^{2}$
The minimum value of x^{2} occurs when $t=\frac{1}{25}$
So $\quad x^{2}=8-\frac{4}{25}+\frac{50}{625}$

$$
=\frac{198}{25}
$$

$\therefore x=\frac{\sqrt{198}}{5}$ or 2.81 (3 s.f.)

2 Let the lines respectively be l_{1} and l_{2}
Let A and B be general points on l_{1} and l_{2} respectively.
$\therefore \overrightarrow{A B}=\left(\begin{array}{c}5+\lambda+4 \mu \\ -3-\lambda-2 \mu \\ 1+\lambda+3 \mu\end{array}\right)$
$\overrightarrow{A B}$ perpendicular to l_{1}
$\therefore\left(\begin{array}{c}5+\lambda+4 \mu \\ -3-\lambda-2 \mu \\ 1+\lambda+3 \mu\end{array}\right) \cdot\left(\begin{array}{c}-1 \\ 1 \\ -1\end{array}\right)=0$
$\Rightarrow \lambda+3 \mu=-3$
$\overrightarrow{A B}$ perpendicular to l_{2}
$\left(\begin{array}{c}5+\lambda+4 \mu \\ -3-\lambda-2 \mu \\ 1+\lambda+3 \mu\end{array}\right) \cdot\left(\begin{array}{c}4 \\ -2 \\ 3\end{array}\right)=0$
$\Rightarrow 9 \lambda+29 \mu=-29$
Solving these simultaneous equations,

$$
\begin{aligned}
& \lambda=0, \mu=-1 \\
& \therefore \overrightarrow{A B}=\left(\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right) \\
& \Rightarrow|\overrightarrow{A B}|=\sqrt{1^{2}+1^{2}+(-2)^{2}}=\sqrt{6}
\end{aligned}
$$

$3 \mathbf{a}\left(\begin{array}{l}7+6 \lambda \\ 3+2 \lambda \\ 1-4 \lambda\end{array}\right)=\left(\begin{array}{c}-1 \\ 1-2 \mu \\ 2\end{array}\right)$
i component $\Rightarrow \lambda=-\frac{4}{3}$
\mathbf{k} component $\Rightarrow \lambda=-\frac{1}{4}$
So the equations aren't consistent
Therefore, l_{1} and l_{2} do not intersect
Let A and B be general points on l_{1} and l_{2} respectively.
$\therefore \overrightarrow{A B}=\left(\begin{array}{c}-8-6 \lambda \\ -2-2 \lambda-2 \mu \\ 1+4 \lambda\end{array}\right)$
$\overrightarrow{A B}$ is perpendicular to l_{1}
$\therefore\left(\begin{array}{c}-8-6 \lambda \\ -2-2 \lambda-2 \mu \\ 1+4 \lambda\end{array}\right) \cdot\left(\begin{array}{c}6 \\ 2 \\ -4\end{array}\right)=0$
$\Rightarrow 14 \lambda+\mu=-14$
$\overrightarrow{A B}$ is perpendicular to l_{2}

$$
\begin{aligned}
& \left(\begin{array}{c}
-8-6 \lambda \\
-2-2 \lambda-2 \mu \\
1+4 \lambda
\end{array}\right) \cdot\left(\begin{array}{c}
0 \\
-2 \\
0
\end{array}\right)=0 \\
& \Rightarrow \lambda+\mu=-1
\end{aligned}
$$

Solving these simultaneous equations,

$$
\begin{aligned}
& \lambda=-1, \mu=0 \\
& \therefore \overrightarrow{A B}=\left(\begin{array}{c}
-2 \\
0 \\
-3
\end{array}\right) \\
& \Rightarrow|\overrightarrow{A B}|=\sqrt{(-2)^{2}+(-3)^{2}}=\sqrt{13}=3.61 \text { (3 s.f.) }
\end{aligned}
$$

3 b Assume that l_{1} and l_{2} meet:

$$
\left(\begin{array}{c}
2+2 \lambda \tag{1}\\
1-2 \lambda \\
-2+2 \lambda
\end{array}\right)=\left(\begin{array}{c}
1+\mu \\
-1-\mu \\
3+\mu
\end{array}\right)
$$

i.e. $2+2 \lambda=1+\mu$
$1-2 \lambda=-1-\mu$
$-2+2 \lambda=3+\mu$

Adding equations (1) and (2) gives $3=0$
This is a contradiction.
\therefore Lines do not meet.
The lines are in fact parallel as $2 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$ is a multiple of $\mathbf{i}-\mathbf{j}+\mathbf{k}$.
The distance between them is found by considering A on line l_{1} and B on line l_{2}.
Then $\overrightarrow{A B}=-\mathbf{i}-2 \mathbf{j}+5 \mathbf{k}+t(\mathbf{i}-\mathbf{j}+\mathbf{k})$

$$
\begin{aligned}
|\overrightarrow{A B}|^{2} & =x^{2}=(-1+t)^{2}+(-2-t)^{2}+(5+t)^{2} \\
& =1-2 t+t^{2}+4+4 t+t^{2}+25+10 t+t^{2} \\
& =30+12 t+3 t^{2}
\end{aligned}
$$

The minimum value of x^{2} occurs when $\frac{\mathrm{d}\left(x^{2}\right)}{\mathrm{d} t}=0$

$$
\frac{\mathrm{d}(x)^{2}}{\mathrm{~d} t}=12+6 t
$$

When $\frac{\mathrm{d}(x)^{2}}{\mathrm{~d} t}=0, t=-2$

$$
\begin{aligned}
\therefore x^{2} & =30-24+12 \\
& =18
\end{aligned}
$$

$\therefore x=\sqrt{18}=3 \sqrt{2}$ or 4.24 (3 s.f.)

3 c Assume that l_{1} and l_{2} meet. Then

$$
\left(\begin{array}{c}
1+2 \lambda \tag{1}\\
1+\lambda \\
5-2 \lambda
\end{array}\right)=\left(\begin{array}{c}
-1+\mu \\
-1+\mu \\
2+\mu
\end{array}\right)
$$

i.e. $1+2 \lambda=-1+\mu$
$1+\lambda=-1+\mu$
$5-2 \lambda=2+\mu$

Comparing equations (1) and (2) gives $1+2 \lambda=1+\lambda$, so $\lambda=0$
Substituting $\lambda=0$ in (1) gives $\mu=2$
Substituting these values in (3) gives $5-2 \times 0=2+2$, which is a contradiction
\therefore Lines do not meet.
Let A and B be general points on l_{1} and l_{2} respectively.
$\therefore \overrightarrow{A B}=\left(\begin{array}{c}-2+\mu-2 \lambda \\ -2+\mu-\lambda \\ -3+\mu+2 \lambda\end{array}\right)$
$\overrightarrow{A B}$ is perpendicular to l_{1}
$\therefore\left(\begin{array}{c}-2+\mu-2 \lambda \\ -2+\mu-\lambda \\ -3+\mu+2 \lambda\end{array}\right) \cdot\left(\begin{array}{c}2 \\ 1 \\ -2\end{array}\right)=0$
$\Rightarrow \mu-9 \lambda=0$
$\overrightarrow{A B}$ is perpendicular to l_{2}
$\left(\begin{array}{c}-2+\mu-2 \lambda \\ -2+\mu-\lambda \\ -3+\mu+2 \lambda\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=0$
$\Rightarrow-7+3 \mu-\lambda=0$
Solving these simultaneous equations,
$\lambda=\frac{7}{26}, \mu=\frac{63}{26}$
$\therefore \overrightarrow{A B}=\left(\begin{array}{c}-\frac{3}{26} \\ \frac{4}{26} \\ -\frac{1}{26}\end{array}\right)$
$\Rightarrow|\overrightarrow{A B}|=\sqrt{\left(-\frac{3}{26}\right)^{2}+\left(\frac{4}{26}\right)^{2}+\left(-\frac{1}{26}\right)^{2}}=\frac{1}{\sqrt{26}}=0.196$ (3 s.f.)
$4 \quad$ Let A be the point $(4,1,-1)$ and B be the point $(3+2 t,-1-t, 2-t)$ which lies on the line.
Then $\overrightarrow{B A}=\mathbf{a}-\mathbf{b}$

Find the distance between $(4,1,-1)$ and $(3+2 t,-1-t, 2-t)$ at a point on the line.

$$
\begin{aligned}
& =[4-(3+2 t), 1-(-1-t),-1-(2-t)] \\
& =[1-2 t, 2+t,-3+t] \\
\therefore|\overrightarrow{B A}|^{2} & =(1-2 t)^{2}+(2+t)^{2}+(-3+t)^{2} \\
& =6 t^{2}-6 t+14
\end{aligned}
$$

$|\overrightarrow{B A}|$ is a minimum when $|\overrightarrow{B A}|^{2}$ is minimum
This minimum value can be found by calculus or completion of the square.

$$
\begin{aligned}
|\overrightarrow{B A}|^{2} & =6\left(t^{2}-t\right)+14 \\
& =6\left(t-\frac{1}{2}\right)^{2}+14-\frac{6}{4}
\end{aligned}
$$

This is a minimum when $t=\frac{1}{2}$ and

$$
\begin{aligned}
& |\overrightarrow{B A}|^{2}=14-1 \frac{1}{2}=12 \frac{1}{2} \\
& \therefore|\overrightarrow{B A}|=\sqrt{12 \frac{1}{2}}=3.54(3 \text { s.f.) }
\end{aligned}
$$

5 a The distance from the origin to the plane $\mathbf{r} \cdot(6 \mathbf{i}+6 \mathbf{j}-7 \mathbf{k})=55$ is $\frac{55}{\sqrt{6^{2}+6^{2}+(-7)^{2}}}$

$$
\begin{array}{ll}
=\frac{55}{\sqrt{121}} & \longleftarrow \begin{array}{l}
\text { First find the distance from the } \\
\text { origin to each plane, then } \\
\text { subtract. }
\end{array} \\
=\frac{55}{11} &
\end{array}
$$

$=5$
The distance from the origin to the plane $\mathbf{r} \cdot(6 \mathbf{i}+6 \mathbf{j}-7 \mathbf{k})=22$ is $\frac{22}{\sqrt{6^{2}+6^{2}+(-7)^{2}}}$ $=\frac{22}{11}$
$=2$
\therefore The distance between the planes is $5-2=3$

5 b Let $\mathbf{n}=\left(n_{1}, n_{2}, n_{3}\right)$,
Take the scalar product of \mathbf{n} with each of the two direction vectors of either of the planes
(The first plane has been used in this solution)

$$
\begin{align*}
& \left(\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right) \cdot\left(\begin{array}{l}
4 \\
0 \\
1
\end{array}\right)=4 n_{1}+n_{3}=0 \tag{1}\\
& \left(\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right) \cdot\left(\begin{array}{l}
8 \\
3 \\
3
\end{array}\right)=8 n_{1}+3 n_{2}+3 n_{3}=0 \tag{2}
\end{align*}
$$

Since if two vectors are perpendicular, then their scalar product is zero.
Let $n_{1}=k$
Substitute $n_{1}=k$ into (1) to find $n_{3}=-4 k$
Substitute $n_{1}=k$ and $n_{3}=-4 k$ into (2) to find $n_{2}=\frac{4}{3} k$
So $\mathbf{n}=\left(k, \frac{4}{3} k,-4 k\right)$
Let $k=3$
(You could choose any value for k other than zero, 3 is convenient as it removes the fraction.)
$\mathbf{n}=(3,4,-12)$
So the Cartesian form of the first plane is
$3 x+4 y-12 z=13$
To find the distance between the planes choose a point on the second plane and use
$\frac{|a \alpha+b \beta+c \gamma+d|}{\sqrt{a^{2}+b^{2}+c^{2}}}$
Choose $(14,2,2)$ as the point on the second plane and substitute to find
Distance between planes $=\frac{|3(14)+4(2)+(-12)(2)+(-13)|}{\sqrt{3^{2}+4^{2}+(-12)^{2}}}$

$$
=\frac{42+8-24-13}{\sqrt{169}}
$$

$$
=\frac{13}{13}
$$

$$
=1
$$

So the distance between the planes is 1 .
6 a The length of the normal vector $10 \mathbf{i}+10 \mathbf{j}+23 \mathbf{k}$ is $\sqrt{10^{2}+10^{2}+23^{2}}=\sqrt{729}=27$ $\therefore \frac{1}{27}(10 \mathbf{i}+10 \mathbf{j}+23 \mathbf{k})$ is a unit vector normal to the plane.
The plane has equation
$\mathbf{r} \cdot(10 \mathbf{i}+10 \mathbf{j}+23 \mathbf{k})=81$
or $\mathbf{r} \cdot \frac{1}{27}(10 \mathbf{i}+10 \mathbf{j}+23 \mathbf{k})=\frac{81}{27}=3$
\therefore The perpendicular distance from the origin to the plane is 3 .

6 b A plane parallel to π through the point $(-1,-1,4)$ has equation

$$
\begin{aligned}
\mathbf{r} \cdot \frac{1}{27}(10 \mathbf{i}+10 \mathbf{j}+23 \mathbf{k}) & =(-\mathbf{i}-\mathbf{j}+4 \mathbf{k}) \cdot \frac{1}{27}(10 \mathbf{i}+10 \mathbf{j}+23 \mathbf{k}) \\
& =\frac{-10}{27}-\frac{10}{27}+\frac{92}{27} \\
& =\frac{72}{27} \\
& =\frac{8}{3}
\end{aligned}
$$

\therefore The perpendicular distance from the origin to this new plane is $2 \frac{2}{3}$
This distance between the planes is $3-2 \frac{2}{3}=\frac{1}{3}$
\therefore The perpendicular distance from the point $(-1,-1,4)$ to the plane π is $\frac{1}{3}$
c A plane parallel to π through the point $(2,1,3)$ has equation

$$
\begin{aligned}
\mathbf{r} \cdot \frac{1}{24}(10 \mathbf{i}+10 \mathbf{j}+23 \mathbf{k}) & =(2 \mathbf{i}+\mathbf{j}+3 \mathbf{k}) \cdot \frac{1}{27}(10 \mathbf{i}+10 \mathbf{j}+23 \mathbf{k}) \\
& =\frac{20}{27}+\frac{10}{27}+\frac{69}{27} \\
& =\frac{99}{27} \\
& =\frac{11}{3}
\end{aligned}
$$

\therefore The perpendicular distance from the origin to this new plane is $3 \frac{2}{3}$
\therefore The distances between this plane and π is $3 \frac{2}{3}-3=\frac{2}{3}$
\therefore The perpendicular distance from $(2,1,3)$ to π is $\frac{2}{3}$
d A plane parallel to π through the point $(6,12,-9)$ has equation

$$
\begin{aligned}
\mathbf{r} \cdot \frac{1}{27}(10 \mathbf{i}+10 \mathbf{j}+23 \mathbf{k}) & =(6 \mathbf{i}+12 \mathbf{j}-9 \mathbf{k}) \cdot \frac{1}{27}(10 \mathbf{i}+10 \mathbf{j}+23 \mathbf{k}) \\
& =\frac{60}{27}+\frac{120}{27}-\frac{207}{27} \\
& =-\frac{27}{27} \\
& =-1
\end{aligned}
$$

\therefore The perpendicular distance from the origin to this new plane is 1 , in the opposite direction.
\therefore The distance between this plane and π is $3-(-1)=4$
\therefore The perpendicular distance from $(2,1,3)$ to π is 4 .

7 Let \mathbf{M} be the midpoint of the line segment joining P to its reflection in l.
Then, for some λ
$\overrightarrow{P M}=\left(\begin{array}{c}-1+\lambda \\ -1+2 \lambda \\ 1-\lambda\end{array}\right)$
$\overrightarrow{P M}$ must be perpendicular to l
$\therefore\left(\begin{array}{c}-1+\lambda \\ -1+2 \lambda \\ 1-\lambda\end{array}\right) \cdot\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)=0$
$\Rightarrow \lambda=\frac{2}{3}$
$\therefore \overrightarrow{P M}=\left(\begin{array}{c}-\frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3}\end{array}\right)$
The reflection of P in l has position vector
$\overrightarrow{O P}+2 \overrightarrow{P M}=\left(\begin{array}{l}3 \\ 0 \\ 2\end{array}\right)+\left(\begin{array}{c}-\frac{2}{3} \\ \frac{2}{3} \\ \frac{2}{3}\end{array}\right)=\left(\begin{array}{l}\frac{7}{3} \\ \frac{2}{3} \\ \frac{8}{3}\end{array}\right)$
$\therefore\left(\frac{7}{3}, \frac{2}{3}, \frac{8}{3}\right)$
8 a $\frac{|1(-2)+0(1)+3(1)-5|}{\sqrt{(-2)^{2}+1^{2}+1^{2}}}=\frac{4}{\sqrt{6}}=\frac{2 \sqrt{6}}{3}$
b A unit normal vector to the plane is $\frac{1}{\sqrt{6}}\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right)$
The line segment along the shortest distance from P to the plane is normal to the plane,
and the distance is $\frac{2 \sqrt{6}}{3}$
Therefore Q has position vector
$\overrightarrow{O Q}=\left(\begin{array}{l}1 \\ 0 \\ 3\end{array}\right)+2\left(\frac{2 \sqrt{6}}{3}\right)\left(\frac{1}{\sqrt{6}}\right)\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{c}-\frac{5}{3} \\ \frac{4}{3} \\ \frac{13}{3}\end{array}\right)$
$\therefore Q\left(-\frac{5}{3}, \frac{4}{3}, \frac{13}{3}\right)$

9 a The kestrel's path in vector form is

$$
\mathbf{r}=\left(\begin{array}{l}
3 \\
5 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
9 \\
-5 \\
1.2
\end{array}\right), 0 \leqslant \lambda \leqslant 1
$$

Let \mathbf{G} be the position of the birdwatcher.
Let \mathbf{H} be a general point in the path. Then,

$$
\overrightarrow{G H}=\left(\begin{array}{c}
-2+9 \lambda \\
1-5 \lambda \\
-0.7+1.2 \lambda
\end{array}\right)
$$

The shortest distance between the kestrel and the birdwatcher will occur when
$\overrightarrow{G H}$ is perpendicular to the path.
$\therefore\left(\begin{array}{c}-2+9 \lambda \\ 1-5 \lambda \\ -0.7+1.2 \lambda\end{array}\right) \cdot\left(\begin{array}{c}9 \\ -5 \\ 1.2\end{array}\right)=0$
$\Rightarrow \lambda=\frac{35}{158}$
$\therefore \overrightarrow{G H}=\left(\begin{array}{c}-2+9\left(\frac{35}{158}\right) \\ 1-5\left(\frac{35}{158}\right) \\ -0.7+1.2\left(\frac{35}{158}\right)\end{array}\right)$
$\therefore|\overrightarrow{G H}|=0.45 \quad$ (2 d.p.)
$\Rightarrow|\overrightarrow{G H}|<0.5$
So the birdwatcher will be able to spot the kestrel.
b In practice, the bird is very unlikely to fly in a straight line from A to B
10a $\frac{|4(3)-(-2)+8(4)-6|}{\sqrt{3^{2}+(-2)^{2}+4^{2}}}=\frac{40}{\sqrt{29}}=\frac{40 \sqrt{29}}{29}$
$\mathbf{b}\left(\lambda\left(\begin{array}{c}2 \\ -2 \\ 3\end{array}\right)+\mu\left(\begin{array}{c}-3 \\ 0 \\ 3\end{array}\right)\right) \cdot\left(\begin{array}{l}2 \\ 5 \\ 2\end{array}\right)$
$=\lambda\left(\begin{array}{c}2 \\ -2 \\ 3\end{array}\right) \cdot\left(\begin{array}{l}2 \\ 5 \\ 2\end{array}\right)+\mu\left(\begin{array}{c}-3 \\ 0 \\ 3\end{array}\right) \cdot\left(\begin{array}{l}2 \\ 5 \\ 2\end{array}\right)$
$=\lambda(4-10+6)+\mu(-6+0+6)=0$

10c $\quad \mathbf{n}_{1}=\left(\begin{array}{c}3 \\ -2 \\ 4\end{array}\right), \mathbf{n}_{2}=\left(\begin{array}{l}2 \\ 5 \\ 2\end{array}\right)$
$\mathbf{n}_{1} \cdot \mathbf{n}_{2}=\left(\begin{array}{c}3 \\ -2 \\ 4\end{array}\right) \cdot\left(\begin{array}{l}2 \\ 5 \\ 2\end{array}\right)=6-10+8=4$
$\left|\mathbf{n}_{1}\right|=\sqrt{29}, \quad\left|\mathbf{n}_{2}\right|=\sqrt{33}$
$\therefore \cos \theta=\frac{4}{\sqrt{29} \sqrt{33}}$
$\Rightarrow \theta=82.6^{\circ}$ (1d.p.)
11 a A vector equation for l_{1} is
$\mathbf{r}=\left(\begin{array}{c}-2 \\ 2 \\ -1\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -1 \\ -2\end{array}\right)$
Let M be a general point on l_{1}
$\overrightarrow{A M}=\left(\begin{array}{c}-5+2 \lambda \\ 3-\lambda \\ -3-2 \lambda\end{array}\right)$
$|\overrightarrow{A M}|$ is minimum when $\overrightarrow{A M}$ is
perpendicular to l_{1}
$\therefore\left(\begin{array}{c}-5+2 \lambda \\ 3-\lambda \\ -3-2 \lambda\end{array}\right) \cdot\left(\begin{array}{c}2 \\ -1 \\ -2\end{array}\right)=0$
$\Rightarrow \lambda=\frac{7}{9}$
$\therefore \overrightarrow{A M}=\frac{1}{9}\left(\begin{array}{c}-31 \\ 20 \\ -41\end{array}\right)$
$\Rightarrow|\overrightarrow{A M}|=\frac{13 \sqrt{2}}{3}$
b A vector equation is

$$
\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right)+\lambda\left(\begin{array}{c}
-31 \\
20 \\
-41
\end{array}\right)
$$

So a cartesian equation is
$\frac{x-3}{-31}=\frac{y+1}{20}=\frac{z-2}{-41}$

12 First find the intersection between l_{1} and the plane.
$\left(\begin{array}{c}2+4 \lambda \\ -1-3 \lambda \\ 2+4 \lambda\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -1 \\ -1\end{array}\right)=1+3 \lambda=4$
$\Rightarrow \lambda=1$
$\therefore(6,-4,6)$
Choose any other point along l_{1}, and reflect
it in the plane to obtain e.g. $\left(\begin{array}{c}4 \\ -3 \\ 0\end{array}\right)$
$r=\left(\begin{array}{c}4 \\ -3 \\ 0\end{array}\right)+\mu\left(\begin{array}{c}2 \\ -1 \\ 6\end{array}\right)$

