Exercise 9D

1 a Direction vectors are **a** =
$$
\begin{pmatrix} 3 \\ -5 \\ -1 \end{pmatrix}
$$
 and **b** = $\begin{pmatrix} 2 \\ 1 \\ -9 \end{pmatrix}$

$$
\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}
$$

\n
$$
\mathbf{a} \cdot \mathbf{b} = \begin{pmatrix} 3 \\ -5 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ -9 \end{pmatrix} = 6 - 5 + 9 = 10
$$

\n
$$
|\mathbf{a}| = \sqrt{3^2 + (-5)^2 + (-1)^2} = \sqrt{35}
$$

\n
$$
|\mathbf{b}| = \sqrt{2^2 + 1^2 + (-9)^2} = \sqrt{86}
$$

\n
$$
\cos \theta = \frac{10}{\sqrt{35}\sqrt{86}}
$$

\n
$$
\theta = 79.5^{\circ} \quad (1 \text{ d.p.})
$$

The acute angle between the lines is 79.5° (1 d.p.)

b Direction vectors are
$$
\mathbf{a} = \begin{pmatrix} -2 \\ -1 \\ 3 \end{pmatrix}
$$
 and $\mathbf{b} = \begin{pmatrix} -4 \\ -2 \\ 1 \end{pmatrix}$

$$
\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}
$$

\n
$$
\mathbf{a} \cdot \mathbf{b} = \begin{pmatrix} -2 \\ -1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} -4 \\ -2 \\ 1 \end{pmatrix} = 8 + 2 + 3 = 13
$$

\n
$$
|\mathbf{a}| = \sqrt{(-2)^2 + (-1)^2 + 3^2} = \sqrt{14}
$$

\n
$$
|\mathbf{b}| = \sqrt{(-4)^2 + (-2)^2 + 1^2} = \sqrt{21}
$$

\n
$$
\cos \theta = \frac{13}{\sqrt{14}\sqrt{21}}
$$

\n
$$
\theta = 40.7^{\circ} \quad (1 \text{ d.p.)}
$$

\nThe acute angle between the lines is 40.7° (1 d.p.)

SolutionBank

Core Pure Mathematics Book 1/AS

1 c Direction vectors are **a** 1 1 $= \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and 2 7 $=\begin{pmatrix} 2 \\ -7 \\ 3 \end{pmatrix}$ **b**

$$
\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}
$$

\n
$$
\mathbf{a} \cdot \mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -7 \\ 3 \end{pmatrix} = 2 - 7 + 3 = -2
$$

\n
$$
|\mathbf{a}| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}
$$

\n
$$
|\mathbf{b}| = \sqrt{2^2 + (-7)^2 + 3^2} = \sqrt{62}
$$

\n
$$
\cos \theta = \frac{-2}{\sqrt{3}\sqrt{62}}
$$

$$
\theta = 98.4^{\circ} \quad (1 d.p.)
$$

This is the angle between the two vectors. The acute angle between the lines is $180^\circ - 98.4^\circ = 81.6^\circ$ (1 d.p.).

d Direction vectors are **a** 8 1 $=\begin{pmatrix} 8 \\ -1 \\ -2 \end{pmatrix}$ and **b** 1 3 $=\begin{pmatrix} 1 \\ 3 \\ -7 \end{pmatrix}$

$$
\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}
$$

\n
$$
\mathbf{a} \cdot \mathbf{b} = \begin{pmatrix} 8 \\ -1 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 3 \\ -7 \end{pmatrix} = 8 - 3 + 14 = 19
$$

\n
$$
|\mathbf{a}| = \sqrt{8^2 + (-1)^2 + (-2)^2} = \sqrt{69}
$$

\n
$$
|\mathbf{b}| = \sqrt{1^2 + 3^2 + (-7)^2} = \sqrt{59}
$$

\n
$$
\cos \theta = \frac{19}{\sqrt{69}\sqrt{59}}
$$

\n
$$
\theta = 72.7^{\circ} \text{ (1 d.p.)}
$$

\nThe acute angle between the lines is 72.7° (1 d.p.)

1 e Direction vectors are
$$
\mathbf{a} = \begin{pmatrix} 11 \\ 5 \\ -3 \end{pmatrix}
$$
 and $\mathbf{b} = \begin{pmatrix} -3 \\ 5 \\ 4 \end{pmatrix}$

$$
\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}
$$

\n
$$
\mathbf{a} \cdot \mathbf{b} = \begin{pmatrix} 11 \\ 5 \\ -3 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 5 \\ 4 \end{pmatrix} = -33 + 25 - 12 = -20
$$

\n
$$
|\mathbf{a}| = \sqrt{11^2 + 5^2 + (-3)^2} = \sqrt{155}
$$

\n
$$
|\mathbf{b}| = \sqrt{(-3)^2 + 5^2 + 4^2} = \sqrt{50}
$$

\n
$$
\cos \theta = \frac{-20}{\sqrt{155}\sqrt{50}}
$$

\n
$$
\theta = 103.1^\circ \quad (1 \text{ d.p.})
$$

\nThis is the angle between the two vectors.
\nThe acute angle between the lines is $180^\circ - 103.1^\circ = 76.9^\circ \quad (1 \text{ d.p.})$.

2 **a**
$$
\mathbf{r} \cdot (2\mathbf{i} + \mathbf{j} + \mathbf{k}) = (\mathbf{i} - \mathbf{j} - \mathbf{k}) \cdot (2\mathbf{i} + \mathbf{j} + \mathbf{k})
$$

\t $= 2 - 1 - 1$
\t\ti.e. $\mathbf{r} \cdot (2\mathbf{i} + \mathbf{j} + \mathbf{k}) = 0$
\t\t $\mathbf{r} \cdot (5\mathbf{i} - \mathbf{j} - 3\mathbf{k}) = (\mathbf{i} + 2\mathbf{j} + \mathbf{k}) \cdot (5\mathbf{i} - \mathbf{j} - 3\mathbf{k})$
\t $= 5 - 2 - 3$
\t\ti.e. $\mathbf{r} \cdot (5\mathbf{i} - \mathbf{j} - 3\mathbf{k}) = 0$
\t\t $\mathbf{c} \qquad \mathbf{r} \cdot (\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}) = (2\mathbf{i} - 3\mathbf{k}) \cdot (\mathbf{i} + 3\mathbf{j} + 4\mathbf{k})$
\t $= 2 - 12$
\t\ti.e. $\mathbf{r} \cdot (\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}) = -10$
\t\t $\mathbf{d} \qquad \mathbf{r} \cdot (4\mathbf{i} + \mathbf{j} - 5\mathbf{k}) = (4\mathbf{i} - 2\mathbf{j} + \mathbf{k}) \cdot (4\mathbf{i} + \mathbf{j} - 5\mathbf{k})$
\t $= 16 - 2 - 5$
\t\ti.e. $\mathbf{r} \cdot (4\mathbf{i} + \mathbf{j} - 5\mathbf{k}) = 9$

3 **a**
$$
2x + y + z = 0
$$

\n**b** $5x - y - 3z = 0$
\n**c** $x + 3y + 4z = -10$

4 Expanding the scalar product gives

$$
\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} = k
$$

\n
$$
\Rightarrow n_1 x + n_2 y + n_3 z = k
$$

d $4x + y - 5z = 9$

5

Find the acute angle between the given line and the normal to the plane, then subtract from 90°.

Let θ be the acute angle between the line and the normal to the plane.

Then
$$
\cos \theta = \left| \frac{(4\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}) \cdot (2\mathbf{i} + \mathbf{j} - 2\mathbf{k})}{\sqrt{4^2 + 4^2 + 7^2} \sqrt{2^2 + 1^2 + (-2)^2}} \right|
$$

= $\left| \frac{8 + 4 - 14}{\sqrt{81}\sqrt{9}} \right|$
= $\left| \frac{-2}{27} \right| = \frac{2}{27}$

Let α be the angle between the line and the plane.

Then
$$
\theta + \alpha = 90^{\circ}
$$

\nSo $\sin \alpha = \cos \theta = \frac{2}{27}$
\n $\therefore \alpha = 4.25^{\circ}$ (3 s.f.)

6 Let θ be the acute angle between the line and the normal to the plane.

Then
$$
\cos \theta = \frac{(3\mathbf{i} + 4\mathbf{j} - 12\mathbf{k}) \cdot (4\mathbf{i} - 4\mathbf{j} - 7\mathbf{k})}{\sqrt{3^2 + 4^2 + (-12)^2} \sqrt{4^2 + (-4)^2 + (-7)^2}}
$$

= $\frac{12 - 16 + 84}{\sqrt{169} \sqrt{81}}$
= $\frac{80}{13 \times 9}$
= $\frac{80}{117}$

Find the acute angle between the given line and the normal to the plane, then subtract from 90°.

Let α be the angle between the line and the plane.

Then $\theta + \alpha = 90^{\circ}$

So
$$
\sin \alpha = \cos \theta = \frac{80}{117}
$$

$$
\therefore \alpha = 43.1^{\circ} \text{ (3s.f.)}
$$

7 Then angle θ between the two normal vectors $\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$ and $-4\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}$ is given by

$$
\cos \theta = \frac{(\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}) \cdot (-4\mathbf{i} + 4\mathbf{j} + 7\mathbf{k})}{|\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}| | -4\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}|}
$$

=
$$
\frac{-4 + 8 - 14}{\sqrt{1^2 + 2^2 + (-2)^2} \sqrt{(-4)^2 + 4^2 + 7^2}}
$$

=
$$
\frac{-10}{\sqrt{9}\sqrt{81}}
$$

=
$$
-\frac{10}{27}
$$

The acute angle,

$$
\alpha + \theta = 180^\circ
$$

Rock Rock

First find the angle between the two normal vectors.

 α , between the two planes is such that $\alpha + \theta = 180^{\circ}$ So $\cos \alpha = -\cos \theta$ 10

$$
=\frac{16}{27}
$$

$$
\therefore \alpha = 68.3^{\circ} \text{ (3 s.f.)}
$$

8 The angle θ between the two normal vectors $3\mathbf{i} - 4\mathbf{j} + 12\mathbf{k}$ and $5\mathbf{i} - 12\mathbf{k}$ is given by

$$
\cos \theta = \frac{(3\mathbf{i} - 4\mathbf{j} + 12\mathbf{k}) \cdot (5\mathbf{i} - 12\mathbf{k})}{|3\mathbf{i} - 4\mathbf{j} + 12\mathbf{k}| |5\mathbf{i} - 12\mathbf{k}|}
$$

=
$$
\frac{15 - 144}{\sqrt{3^2 + (-4)^2 + 12^2} \sqrt{5^2 + (-12)^2}}
$$

=
$$
\frac{-129}{\sqrt{169} \sqrt{169}}
$$

=
$$
\frac{-129}{169}
$$

The acute angle α between the planes is such that $\alpha + \theta = 180^{\circ}$

So
$$
\cos \alpha = -\cos \theta = \frac{129}{169}
$$

\n $\therefore \alpha = 40.2^{\circ}$ (3 s.f.)
\n9 **a** Line l_1 : $\mathbf{r} = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 8 \\ 5 \\ 1 \end{pmatrix}$
\nWhen $\lambda = 1$, $\mathbf{r} = \begin{pmatrix} 9 \\ 9 \\ 3 \end{pmatrix}$

So the point (9, 9, 3) lies on *l*1.

9 **b** Direction vectors are
$$
a = \begin{pmatrix} 8 \ 5 \ 1 \end{pmatrix}
$$
 and $b = \begin{pmatrix} 3 \ 1 \ 0 \end{pmatrix}$
\n
$$
\mathbf{a} \cdot \mathbf{b} = \begin{pmatrix} 8 \ 5 \ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \ 1 \ 0 \end{pmatrix} = 24 + 5 + 0 = 29
$$
\n
$$
|a| = \sqrt{8^2 + 5^2 + 1^2} = \sqrt{90}
$$
\n
$$
|b| = \sqrt{3^2 + 1^2 + 0^2} = \sqrt{10}
$$
\n
$$
\cos \theta = \frac{29}{\sqrt{90}\sqrt{10}} = \frac{29}{\sqrt{900}} = \frac{29}{30}
$$
\n**c** $\mathbf{PQ} = \sqrt{(9-1)^2 + (9-4)^2 + (3-2)^2} = \sqrt{8^2 + 5^2 + 1^2} = \sqrt{90}$
\nLine *l*: $\mathbf{r} = \begin{pmatrix} 1 \ 4 \ 2 \end{pmatrix} + s \begin{pmatrix} 3 \ 1 \ 0 \end{pmatrix} = \begin{pmatrix} 1+3s \ 4+s \ 0 \end{pmatrix}$

Let the coordinates of *R* be $(1 + 3s, 4 + s, 2)$ 2 $(4 \times 10^{2} \times (2 \cdot 2)^{2}$ $(1+3s-1)^2+(4+s-4)^2+(2-2)$ $(s-1)^2 + (4+s)$ $=\sqrt{(1+3s-1)^2+(4+s-4)^2+(2-$ **PR**

$$
= \sqrt{9s^2 + s^2} = \sqrt{10s^2}
$$

$$
PQ^2 = PR^2:90 = 10s^2
$$

$$
\Rightarrow 5^2 = 9
$$

$$
\Rightarrow s = \pm 3
$$

When
$$
s = 3
$$
, $\mathbf{r} = \begin{pmatrix} 10 \\ 7 \\ 2 \end{pmatrix}$ $R: (10, 7, 2)$
When $s = -3$, $\mathbf{r} = \begin{pmatrix} -8 \\ 1 \\ 2 \end{pmatrix}$ $R: (-8, 1, 2)$

10 a
$$
\frac{3-6}{-1} = \frac{3+3}{2} = \frac{7+2}{3} = 3
$$

and

$$
\frac{3+5}{2} = \frac{3-15}{-3} = \frac{7-3}{1} = 4
$$

So *A* lies on both *l*₁ and *l*₂

10 b
$$
\mathbf{a} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}
$$

\n $\therefore \mathbf{a} \cdot \mathbf{b} = -2 - 6 + 3 = -5$
\n $|\mathbf{a}| = \sqrt{(-1)^2 + 2^2 + 3^2} = \sqrt{14}$
\n $|\mathbf{b}| = \sqrt{2^2 + (-3)^2 + 1^2} = \sqrt{14}$
\n $\therefore \cos \theta = \frac{-5}{\sqrt{14}\sqrt{14}} = \frac{5}{14}$
\n $\Rightarrow \theta = 69.1^\circ \text{ (1d.p.)}$

$$
11\begin{pmatrix} 1\\3\\3 \end{pmatrix} + 3\begin{pmatrix} 3\\2\\2\\-1 \end{pmatrix} = \begin{pmatrix} 10\\9\\0 \end{pmatrix} \Rightarrow A = (10, 9, 0)
$$

$$
\begin{pmatrix} 3\\5\\-2 \end{pmatrix} - 2\begin{pmatrix} -4\\-3\\1 \end{pmatrix} = \begin{pmatrix} 11\\11\\-4 \end{pmatrix} \Rightarrow B = (11, 11, -4)
$$

$$
\therefore \overline{AB} = \mathbf{v}_1 = \begin{pmatrix} 1\\2\\-4 \end{pmatrix}
$$

$$
l_1 \text{ has direction vector } \mathbf{v}_2 = \begin{pmatrix} 3\\2\\-1 \end{pmatrix}
$$

$$
\mathbf{v}_1 \cdot \mathbf{v}_2 = \begin{pmatrix} 1\\2\\-4 \end{pmatrix} \cdot \begin{pmatrix} 3\\2\\-1 \end{pmatrix} = 3 + 4 + 4 = 11
$$

$$
|\mathbf{v}_1| = \sqrt{1^2 + 2^2 + (-4)^2} = \sqrt{21}
$$

$$
|\mathbf{v}_2| = \sqrt{3^2 + 2^2 + (-1)^2} = \sqrt{14}
$$

$$
\therefore \cos \theta = \frac{11}{\sqrt{21}\sqrt{14}} \Rightarrow \theta = 50.1^\circ \quad (1d.p.)
$$

- **12 a** Find the plane containing $A = (3, 5, -1); B = (2, -2, 4);$
	- $C = (4,3,0)$ and show that $D = (1, 4, -3)$ does not lie in it.

$$
\overrightarrow{AB} = \begin{pmatrix} -1 \\ -7 \\ 5 \end{pmatrix}, \quad \overrightarrow{AC} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}
$$

So an equation for the plane is

$$
\mathbf{r} = \begin{pmatrix} 3 \\ 5 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ -7 \\ 5 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}
$$

If *D* lies in the plane, then there exist λ and μ such that

$$
\begin{pmatrix} 3 \ 5 \ -1 \end{pmatrix} + \lambda \begin{pmatrix} -1 \ -7 \ 5 \end{pmatrix} + \mu \begin{pmatrix} 1 \ -2 \ 1 \end{pmatrix} = \begin{pmatrix} 1 \ 4 \ -3 \end{pmatrix}
$$

i component: $3 - \lambda + \mu = 1 \Rightarrow -\lambda + \mu = -2$ j component: $5 - 7\lambda - 2\mu = 4 \Rightarrow 7\lambda + 2\mu = 1$

k component: $-1+5\lambda + \mu = -3 \Rightarrow 5\lambda + \mu = -2$

i and **j** components $\Rightarrow \lambda = \frac{5}{9}, \mu = -\frac{13}{9}$

Check **k** component: $5\left(\frac{5}{9}\right) - \frac{13}{9} = \frac{4}{3} \neq -2$ So the equations are not consistent.

Therefore the points are not coplanar.

$$
\mathbf{b} \quad \overrightarrow{AD} = \mathbf{b} = \begin{pmatrix} -2 \\ -1 \\ -2 \end{pmatrix}
$$

1 The plane has normal vector $\mathbf{n} = \vert 2 \vert$, since this $=\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ **n**

is perpendicular to both AB and AC $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$

$$
\begin{aligned}\n\therefore \mathbf{b} \cdot \mathbf{n} &= \begin{pmatrix} -2 \\ -1 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = -10 \\
|\mathbf{b}| &= \sqrt{(-2)^2 + (-1)^2 + (-2)^2} = 3 \\
|\mathbf{n}| &= \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14} \\
\Rightarrow \sin \theta &= \left| \frac{-10}{3\sqrt{14}} \right| = \frac{10}{3\sqrt{14}} \\
\Rightarrow \theta &= 63.0^\circ \text{ (1d.p.)}\n\end{aligned}
$$

13 Let *E* be the midpoint of *AD*. Then the coordinate of *E* is $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$

The angle θ between planes *ABD* and *ADC* is the same as the angle between the lines *EB* and *EC*

$$
\overrightarrow{EB} = \overrightarrow{OB} - \overrightarrow{OE} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} \\ 1 \\ \frac{1}{2} \end{pmatrix}
$$

\n
$$
\overrightarrow{EC} = \overrightarrow{OC} - \overrightarrow{OE} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} \frac{1}{2} \\ 0 \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ 1 \\ -\frac{1}{2} \end{pmatrix}
$$

\n
$$
\overrightarrow{EB} \cdot \overrightarrow{EC} = \begin{pmatrix} -\frac{1}{2} \\ 1 \\ \frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{2} \\ 1 \\ -\frac{1}{2} \end{pmatrix} = -\frac{1}{4} + 1 - \frac{1}{4} = \frac{1}{2}
$$

\nand
$$
\overrightarrow{EB} \cdot \overrightarrow{EC} = \begin{pmatrix} -\frac{1}{2} \\ 1 \\ \frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{2} \\ 1 \\ -\frac{1}{2} \end{pmatrix} \cos \theta = \sqrt{(-\frac{1}{2})^2 + 1^2 + (\frac{1}{2})^2} \sqrt{(\frac{1}{2})^2 + 1^2 + (-\frac{1}{2})^2} \cos \theta
$$

\n
$$
= \sqrt{\frac{3}{2}} \sqrt{\frac{3}{2}} \cos \theta = \frac{3}{2} \cos \theta
$$

\n(2)

So equating equations (1) and (2) gives:

$$
\frac{1}{2} = \frac{3}{2}\cos\theta
$$

So therefore $\cos \theta = \frac{1}{2}$ 3 $\theta =$

Since the tetrahedron is regular, the angle between any two adjacent faces will be the same,

i.e. arccos $\left(\frac{1}{2}\right)$ $\left(\frac{1}{3}\right)$

14 Let point *F* be the point of the top of the pole. So the coordinate of F is $(0,0,20)$

Let the points of the bases of the ropes be $A = (0,8,2)$, $B = (12,-5,3)$ and $C = (-2,6,5)$ respectively.

Then
$$
\overrightarrow{FA} = \begin{pmatrix} 0 \\ 8 \\ -18 \end{pmatrix}
$$
, and $\overrightarrow{FC} = \begin{pmatrix} -2 \\ 6 \\ -15 \end{pmatrix}$

Let θ be the angle between *FA* and *FC*

$$
\overrightarrow{FA}.\overrightarrow{FC} = \begin{pmatrix} 0 \\ 8 \\ -18 \end{pmatrix} \begin{pmatrix} -2 \\ 6 \\ -15 \end{pmatrix} = (0 \times -2) + (8 \times 6) + (-18 \times -15) = 318
$$

$$
\begin{pmatrix} 0 \\ 8 \\ -18 \end{pmatrix} = \sqrt{0^2 + 8^2 + (-18)^2} = \sqrt{388} \text{ and } \begin{pmatrix} -2 \\ 6 \\ -15 \end{pmatrix} = \sqrt{(-2)^2 + 6^2 + (-15)^2} = \sqrt{265}
$$

So $\cos \theta = \frac{318}{\sqrt{388}\sqrt{265}} = 0.9917$

and $\theta = \arccos(0.9917) = 7.4^{\circ}$

So the angle between at least one pair of guide ropes is less than 15 . Therefore the flagpole will not be stable.