Volumes of revolution 5C

1 a $3 x+2 y=27$
When $y=0, x=9$
$y=\frac{1}{2}(27-3 x)$
$y^{2}=\frac{1}{4}\left(729-162 x+9 x^{2}\right)$
$V=\frac{\pi}{4} \int_{0}^{9}\left(729-162 x+9 x^{2}\right) \mathrm{d} x$
$=\frac{\pi}{4}\left[729 x-81 x^{2}+3 x^{3}\right]_{0}^{9}$
$=\frac{2187}{4} \pi$
b $3 x+2 y=27$
When $x=0, y=13.5$
$x=\frac{1}{3}(27-2 y)$
$x^{2}=\frac{1}{9}\left(729-108 y+4 y^{2}\right)$
$V=\frac{\pi}{9} \int_{0}^{13.5}\left(729-108 y+4 y^{2}\right) \mathrm{d} y$
$=\frac{\pi}{9}\left[729 y-54 y^{2}+\frac{4 y^{3}}{3}\right]_{0}^{13.5}$
$=\frac{729}{2} \pi$
c Rotation about the x-axis: $r=13.5, h=9$

$$
V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi \times 13.5^{2} \times 9=\frac{2187}{4} \pi
$$

Rotation about the y-axis: $r=9, h=13.5$

$$
V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi \times 9^{2} \times 13.5=\frac{729}{2} \pi
$$

2 a Substituting $x=2$ into the equation of the line gives $y=8$.
Substituting $x=2$ into the equation of the curve gives $y=\frac{1}{2} \times 4 \times(2+2)=8$.
So $(2,8)$ are the coordinates of the point of intersection A.

2 b Volume V_{1} is generated by rotating the curve about the x-axis.

$$
\begin{aligned}
V_{1} & =\pi \int_{0}^{2}\left(\frac{1}{2} x^{2}(x+2)\right)^{2} \mathrm{~d} x \\
& =\frac{\pi}{4} \int_{0}^{2} x^{4}\left(x^{2}+4 x+4\right) \mathrm{d} x \\
& =\frac{\pi}{4} \int_{0}^{2}\left(x^{6}+4 x^{5}+4 x^{4}\right) \mathrm{d} x \\
& =\frac{\pi}{4}\left[\frac{x^{7}}{7}+\frac{2 x^{6}}{3}+\frac{4 x^{5}}{5}\right]_{0}^{2} \\
& =\frac{\pi}{4}\left(\frac{128}{7}+\frac{128}{3}+\frac{128}{5}\right) \\
& =\pi\left(\frac{32}{7}+\frac{32}{3}+\frac{32}{5}\right) \\
& =\frac{480+1120+672}{105} \pi \\
& =\frac{2272}{105} \pi
\end{aligned}
$$

Volume V_{2} is generated by rotating the line about the x-axis, so is a cone.
When $y=0, x=4$ so $r=8, h=2$
$V_{2}=\frac{1}{3} \pi \times 64 \times 2=\frac{128}{3} \pi$

$$
\begin{aligned}
\text { Total volume } & =\frac{2272}{105} \pi+\frac{128}{3} \pi \\
& =\frac{2272+4480}{105} \pi \\
& =\frac{6752}{105} \pi
\end{aligned}
$$

3 a Substituting $x=2$ into the equation of the line gives $y=4$.
Substituting $x=2$ into the equation of the curve gives $y=-\frac{1}{2} \times 4 \times(2-4)=4$.
So $(2,4)$ are the coordinates of the point of intersection A.
$y=0 \Rightarrow x=4$
so the coordinates of B are $(4,0)$.

3 b Volume generated by area under curve is given by $\pi \int_{2}^{4}\left(-\frac{1}{2} x^{2}(x-4)\right)^{2} \mathrm{~d} x$
$=\frac{\pi}{4} \int_{2}^{4} x^{4}\left(x^{2}-8 x+16\right) \mathrm{d} x$
$=\frac{\pi}{4} \int_{2}^{4}\left(x^{6}-8 x^{5}+16 x^{4}\right) \mathrm{d} x$
$=\frac{\pi}{4}\left[\frac{x^{7}}{7}-\frac{4 x^{6}}{3}+\frac{16 x^{5}}{5}\right]_{2}^{4}$
$=\frac{\pi}{4}\left(\frac{16384}{105}-\frac{3712}{105}\right)$
$=\frac{3168}{105} \pi$
Volume generated by line is a cone with $r=4$ and $h=2$.
Volume of cone $=\frac{1}{3} \pi \times 16 \times 2=\frac{32}{3} \pi$

Volume generated by $R=\frac{3168}{105} \pi-\frac{32}{3} \pi$

$$
=\frac{2048}{105} \pi
$$

4 a Substituting $x=-2$ into the linear equation $2 x-y=-6$ gives $y=2$. Substituting $x=-2$ into the equation of the curve $y=\frac{1}{2} x^{2}$ gives $y=2$.
So $(-2,2)$ are the coordinates of the point of intersection A.

Substituting $x=2$ into the linear equation $2 x+y=6$ gives $y=2$.
Substituting $x=2$ into the equation of the curve $y=\frac{1}{2} x^{2}$ gives $y=2$.
So $(2,2)$ are the coordinates of the point of intersection B.

4 b Volume generated by the curve

$$
\begin{aligned}
& =\pi \int_{0}^{2} x^{2} \mathrm{~d} y \\
& =\pi \int_{0}^{2} 2 y \mathrm{~d} y \\
& =\pi\left[y^{2}\right]_{0}^{2} \\
& =4 \pi
\end{aligned}
$$

Volume generated by the line $2 x+y=6$ is a cone with $r=2$ and $h=4$
Volume of cone $=\frac{1}{3} \pi \times 4 \times 4=\frac{16}{3} \pi$
Total volume $=4 \pi+\frac{16}{3} \pi=\frac{28}{3} \pi$

5 Volume generated by C about the y-axis

$$
\begin{aligned}
& =\pi \int_{0}^{2}\left(4-y^{2}\right) \mathrm{d} y \\
& =\pi\left[4 y-\frac{y^{3}}{3}\right]_{0}^{2} \\
& =\pi\left(8-\frac{8}{3}\right)=\frac{16}{3} \pi
\end{aligned}
$$

Volume of cylinder with $r=3$ and $h=3$

$$
=\pi \times 9 \times 3=27 \pi
$$

Volume generated by R

$$
\begin{aligned}
& =27 \pi-\frac{16}{3} \pi \\
& =\frac{65}{3} \pi
\end{aligned}
$$

$6 y=-\frac{1}{5} x^{2}+5$ intersects the y-axis at $(0,5)$
Rearranging. . . $x^{2}=25-5 y$

Volume generated by the curve about the y-axis

$$
\begin{aligned}
& =\pi \int_{0}^{5} x^{2} \mathrm{~d} y \\
& =\pi \int_{0}^{5}(25-5 y) \mathrm{d} y \\
& =\pi\left[25 y-\frac{5 y^{2}}{2}\right]_{0}^{5} \\
& =\pi\left(125-\frac{125}{2}\right) \\
& =\frac{125}{2} \pi
\end{aligned}
$$

Volume to be subtracted is a cone with $r=4$ and $h=4$.
Volume of cone $=\frac{1}{3} \pi \times 16 \times 4=\frac{64}{3} \pi$

Volume generated by $R=\frac{125}{2} \pi-\frac{64}{3} \pi$

$$
=\frac{247}{6} \pi
$$

$76 y^{2}-x^{3}+4 x=0$
$y=0 \Rightarrow 4 x-x^{3}=0$
$x\left(4-x^{2}\right)=0$
$x=2$ since $x>0$

So C cuts the x-axis at $(2,0)$.
Volume generated by the curve about the x-axis

$$
\begin{aligned}
& =\pi \int_{2}^{4} y^{2} \mathrm{~d} x \\
& =\frac{\pi}{6} \int_{2}^{4}\left(x^{3}-4 x\right) \mathrm{d} x \\
& =\frac{\pi}{6}\left[\frac{x^{4}}{4}-2 x^{2}\right]_{2}^{4} \\
& =\frac{\pi}{6}((64-32)-(4-8)) \\
& =\frac{36 \pi}{6} \\
& =6 \pi
\end{aligned}
$$

Volume generated by lines is a cone with $r=4$ and $h=3$
Volume of cone $=\frac{1}{3} \pi \times 16 \times 3=16 \pi$

Required volume $=16 \pi-6 \pi=10 \pi$

8 Volume generated by rotating the curve $y=4-x^{2}$ about the x-axis

$$
\begin{aligned}
& =\pi \int_{0}^{1}\left(4-x^{2}\right)^{2} \mathrm{~d} x \\
& =\pi \int_{0}^{1}\left(16-8 x^{2}+x^{4}\right) \mathrm{d} x \\
& =\pi\left[16 x-\frac{8 x^{3}}{3}+\frac{x^{5}}{5}\right]_{0}^{1} \\
& =\pi\left(16-\frac{8}{3}+\frac{1}{5}\right) \\
& =\frac{203}{15} \pi
\end{aligned}
$$

Volume generated by rotating the curve $y=\sqrt[3]{x}$ about the x-axis

$$
\begin{aligned}
& =\pi \int_{0}^{1} x^{\frac{2}{3}} \mathrm{~d} x \\
& =\pi\left[\frac{3 x^{\frac{5}{3}}}{5}\right]_{0}^{1} \\
& =\frac{3}{5} \pi
\end{aligned}
$$

Required volume $=\frac{203}{15} \pi-\frac{3}{5} \pi=\frac{194}{15} \pi$
9 a $x^{2}+y^{2}=11$

$$
\begin{aligned}
& x^{2}+\left(x^{2}+1\right)^{2}=11 \\
& x^{2}+x^{4}+2 x^{2}+1=11 \\
& x^{4}+3 x^{2}-10=0 \\
& \left(x^{2}+5\right)\left(x^{2}-2\right)=0 \\
& x= \pm \sqrt{2}
\end{aligned}
$$

So the x coordinates of the points of intersection are $-\sqrt{2}$ and $\sqrt{2}$.

9 b Volume generated by $x^{2}+y^{2}=11$
between $x= \pm \sqrt{2}$ is $\pi \int_{-\sqrt{2}}^{\sqrt{2}}\left(11-x^{2}\right) \mathrm{d} x$

$$
\begin{aligned}
& =\pi\left[11 x-\frac{x^{3}}{3}\right]_{-\sqrt{2}}^{\sqrt{2}} \\
& =\frac{\pi}{3}((33 \sqrt{2}-2 \sqrt{2})-(-33 \sqrt{2}+2 \sqrt{2})) \\
& =\frac{62 \sqrt{2}}{3} \pi
\end{aligned}
$$

Volume generated by $y=x^{2}+1$ between

$$
\begin{aligned}
& x= \pm \sqrt{2} \text { is } \pi \int_{-\sqrt{2}}^{\sqrt{2}}\left(x^{2}+1\right)^{2} \mathrm{~d} x \\
& =\pi \int_{-\sqrt{2}}^{\sqrt{2}}\left(x^{4}+2 x^{2}+1\right) \mathrm{d} x \\
& =\pi\left[\frac{x^{5}}{5}+\frac{2 x^{3}}{3}+x\right]_{-\sqrt{2}}^{\sqrt{2}} \\
& =\pi\left(\frac{4 \sqrt{2}}{5}+\frac{4 \sqrt{2}}{3}+\sqrt{2}\right)-\left(-\frac{4 \sqrt{2}}{5}-\frac{4 \sqrt{2}}{3}-\sqrt{2}\right) \\
& =\pi\left(\frac{8 \sqrt{2}}{5}+\frac{8 \sqrt{2}}{3}+2 \sqrt{2}\right) \\
& =\frac{94 \sqrt{2}}{15} \pi
\end{aligned}
$$

Required volume

$$
\begin{aligned}
& =\frac{62 \sqrt{2}}{3} \pi-\frac{94 \sqrt{2}}{15} \pi \\
& =\frac{72 \sqrt{2}}{5} \pi \\
& =63.98 \text { (2 d.p.) }
\end{aligned}
$$

Challenge

Required volume V will be the volume V_{1} of the cone with $r=5$ and $h=\frac{40}{3}$
minus the volume V_{2} of the cone with

$$
r=2 \text { and } h=\frac{40}{3}-8=\frac{16}{3}
$$

minus the volume V_{3} generated by the curve

$$
y=\frac{64}{x^{3}} \text { between } y=1 \text { and } y=8 .
$$

$$
V_{1}=\frac{1}{3} \pi \times 25 \times \frac{40}{3}=\frac{1000}{9} \pi
$$

$$
V_{2}=\frac{1}{3} \pi \times 4 \times \frac{16}{3}=\frac{64}{9} \pi
$$

$$
V_{3}=\pi \int_{1}^{8} x^{2} \mathrm{~d} y
$$

$$
=\pi \int_{1}^{8}\left(\sqrt[3]{\frac{64}{y}}\right)^{2} \mathrm{~d} y
$$

$$
=16 \pi \int_{1}^{8} y^{-\frac{2}{3}} \mathrm{~d} y
$$

$$
=48 \pi\left[y^{\frac{1}{3}}\right]_{1}^{8}
$$

$$
=48 \pi
$$

$$
\begin{aligned}
V & =V_{1}-V_{2}-V_{3} \\
& =\frac{1000}{9} \pi-\frac{64}{9} \pi-48 \pi \\
& =56 \pi
\end{aligned}
$$

