Applications of forces 7D

1 a Suppose that the rod has length $2 a$.
Taking moments about A:

$$
\begin{aligned}
2 a T & =80 \times a \cos 30^{\circ} \\
2 T & =80 \times \frac{\sqrt{3}}{2} \\
T & =20 \sqrt{3} \\
& =34.6 \mathrm{~N} \\
R(\rightarrow), \quad F=T \sin 30^{\circ} & =10 \sqrt{3}=17.3 \mathrm{~N} \\
R(\uparrow), \quad T \cos 30^{\circ}+R & =80 \\
R & =80-20 \sqrt{3} \times \frac{\sqrt{3}}{2} \\
& =50 \mathrm{~N}
\end{aligned}
$$

In order for the rod to remain in equilibrium, we must have $F \leqslant \mu R$:

$$
\begin{aligned}
10 \sqrt{3} & \leqslant \mu \times 50 \\
\mu & \geqslant \frac{10 \sqrt{3}}{50} \\
\mu & \geqslant \frac{\sqrt{3}}{5}
\end{aligned}
$$

\therefore minimum $\mu=0.35$ (2 s.f.)
So $T=34.6 \mathrm{~N}, F=17.3 \mathrm{~N}, R=50 \mathrm{~N}$, minimum $\mu=0.35$
b Reaction at floor will be resultant of R and F
Magnitude $=\sqrt{50^{2}+17.3^{2}}=53 \mathrm{~N}$ (2 s.f.)
Angle above horizontal $=\tan ^{-1}\left(\frac{50}{17.3}\right)=71^{\circ}(2$ s.f. $)$

2 Let A be the end of the ladder on the ground.
Let F be the frictional force at A.
a Taking moments about A:

$$
\begin{aligned}
10 g \times 2.5 \cos 65^{\circ} & =S \times 5 \sin 65^{\circ} \\
S & =\frac{25 g \cos 65^{\circ}}{5 \sin 65^{\circ}} \\
& =\frac{5 g}{\tan 65^{\circ}} \\
& =22.8 \mathrm{~N}
\end{aligned}
$$

b $R(\rightarrow), \quad F=S=22.8 \mathrm{~N}$

$$
R(\uparrow), \quad R=10 g=98 \mathrm{~N}
$$

c To ensure ladder remains in equilibrium, we must have

$$
\begin{aligned}
F & \leqslant \mu R \\
22.8 & \leqslant \mu \times 98 \\
\mu & \geqslant 0.233 \text { (3 s.f.) }
\end{aligned}
$$

d The weight is shown as acting through the midpoint of the ladder because of the assumption that the ladder is uniform.

3 Let the ladder have length $2 a$, and be inclined at $\boldsymbol{\theta}$ to the horizontal.
a $\quad R(\uparrow), \quad R=30 g$
Taking moments about A:
$20 g \times a \cos \theta+F \times 2 a \sin \theta=R \times 2 a \cos \theta$

$$
\begin{aligned}
20 g \cos \theta+2 F \sin \theta & =60 g \cos \theta \quad(\text { using } R=30 g) \\
2 F \sin \theta & =40 g \cos \theta \\
F & =\frac{20 g}{\tan \theta}
\end{aligned}
$$

The ladder is on the point of slipping, so $F=\mu R$

$$
\begin{aligned}
\frac{20 g}{\tan \theta} & =\frac{3}{4} \times 30 g \\
\therefore \tan \theta & =\frac{2}{3} \times \frac{4}{3}=\frac{8}{9} \\
\therefore \theta & =41.6^{\circ}
\end{aligned}
$$

N is the normal reaction at A, R is the normal reaction at B, F is the frictional force at B.

3 b $R(\uparrow), \quad R=30 g$
$R(\rightarrow), \quad N-F=0$

Taking moments about B :
$20 g \times a \cos \theta=N \times 2 a \sin \theta$
$20 g \times a \cos \theta=F \times 2 a \sin \theta$

$$
\begin{aligned}
F & =\frac{10 g \cos \theta}{\sin \theta} \\
F & =\frac{10 g}{\tan \theta}
\end{aligned}
$$

The ladder is on the point of slipping, so $F=\mu R$

$$
\begin{aligned}
\frac{10 g}{\tan \theta} & =\frac{3}{4} \times 30 g \\
\tan \theta & =\frac{4}{9} \\
\theta & =24.0^{\circ}
\end{aligned}
$$

c The assumption that the wall is smooth means there is no friction between the ladder and the wall.

4 a Suppose that the boy reaches the point B, a distance x from A, whilst the end of the ladder is still in contact with the ground.
$R(\rightarrow), F=N$
$R(\uparrow), \quad R=50 g$
Taking moments about A :

$$
\begin{aligned}
20 g \times 4 \cos \theta+30 g \times x \cos \theta & =N \times 8 \sin \theta \\
80 g+30 g x & =8 N \tan \theta \\
N & =\frac{80 g+30 g x}{8 \tan \theta} \\
N & =\frac{80 g+30 g x}{16} \quad(\text { since } \tan \theta=2) \\
F & =\frac{80 g+30 g x}{16} \quad(\text { since } F=N) \\
\mu R & =\frac{80 g+30 g x}{16} \quad \text { (in limiting equilibrium) } \\
0.3 \times 50 g & =\frac{80 g+30 g x}{16} \\
240 & =80+30 x \\
x & =5 \frac{1}{3} \mathrm{~m}
\end{aligned}
$$

b i The ladder may not be uniform.
ii There would be friction between the ladder and the wall.
5 Let:
S be the normal reaction of the rail on the pole at C, R be the normal reaction of the ground on the pole at A, F be the friction between the pole and the ground at A. \boldsymbol{O} be the angle between the pole and the ground.

From the diagram,

$$
\sin \theta=\frac{3}{4.5}=\frac{2}{3} \text { and hence } \cos \theta=\frac{\sqrt{9-4}}{3}=\frac{\sqrt{5}}{3}
$$

a Taking moments about A:
$4.5 S=4 \times 3 \cos \theta$

$$
\begin{aligned}
& =\frac{12 \sqrt{5}}{3} \\
& =4 \sqrt{5} \\
S & =\frac{8 \sqrt{5}}{9} \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& 5 \text { b } \quad R(\rightarrow) \\
& F=S \sin \theta \\
&=\frac{8 \sqrt{5}}{9} \times \frac{2}{3} \\
&=\frac{16 \sqrt{5}}{27} \\
& R(\uparrow) \\
& R+S \cos \theta=4 \\
& R=4-\frac{8 \sqrt{5}}{9} \times \frac{\sqrt{5}}{3} \\
&=4-\frac{40}{27} \\
&=\frac{68}{27}
\end{aligned}
$$

Pole is in limiting equilibrium, so $F=\mu R$

$$
\begin{aligned}
\frac{16 \sqrt{5}}{27} & =\mu \times \frac{68}{27} \\
\therefore \mu & =\frac{16 \sqrt{5}}{68} \\
& =\frac{4 \sqrt{5}}{17} \\
& =0.526(3 \text { s.f. })
\end{aligned}
$$

c The assumption that the rail is smooth means there is no friction between the rail and the pole.
6 Suppose that the ladder has length $2 a$ and weight W.
Let:
S be the normal reaction of the wall on the ladder, R be the normal reaction of the floor on the ladder, F be the friction between the floor and the ladder.
X be the point where the lines of action of W and S meet.
Taking moments about X :
$2 a \sin \theta \times F=R \times a \cos \theta$

$$
\begin{equation*}
2 F \sin \theta=R \cos \theta \tag{1}
\end{equation*}
$$

The ladder is in limiting equilibrium, so $F=\mu R$

Substituting $F=\mu R$ in (1):

$2 \mu R \sin \theta=R \cos \theta$
$2 \mu \sin \theta=\cos \theta$
$\frac{2 \mu \sin \theta}{\cos \theta}=1$
$2 \mu \tan \theta=1$

7 Let:
N be the normal reaction of the drum on the ladder at P,
R be the normal reaction of the ground on the ladder at A, F be the friction between the ground and the ladder at A.

Taking moments about A :

$$
20 g \times 3.5 \cos 35^{\circ}=5 \mathrm{~N}
$$

$$
\begin{aligned}
N & =\frac{20 g \times 3.5 \cos 35^{\circ}}{5} \\
& =14 g \cos 35^{\circ}
\end{aligned}
$$

$R(\uparrow)$

$$
N \cos 35^{\circ}+R=20 g
$$

$$
R=20 g-14 g \cos 35^{\circ} \times \cos 35^{\circ}
$$

$$
=103.9 \ldots \mathrm{~N}
$$

$$
\begin{aligned}
& R(\rightarrow) \\
& F=N \sin 35^{\circ} \\
& =14 g \cos 35^{\circ} \times \sin 35^{\circ} \\
& \\
& =64.46 \ldots \mathrm{~N}
\end{aligned}
$$

$F \leqslant \mu R$ to maintain equilibrium:
$14 g \cos 35^{\circ} \sin 35^{\circ} \leq \mu\left(20 g-14 g \cos ^{2} 35^{\circ}\right)$

$$
\begin{aligned}
& \mu \geq \frac{14 \cos 35^{\circ} \sin 35^{\circ}}{20-14 \cos ^{2} 35^{\circ}} \\
& \mu \geq 0.620 \text { (3 s.f.) }
\end{aligned}
$$

Least possible μ is 0.620 (3 s.f.)

8 Let:
R be the reaction of the ground on the ladder
F be the friction between the ground and the ladder
S be the reaction of the wall on the ladder
G be the friction between the wall and the ladder.
X be the point where the lines of action R and S meet.
Suppose that the ladder has length $2 a$ and weight W.
As the ladder rests in limiting equilibrium, $F=\mu_{1} R$ and $G=\mu_{2} S$.
Taking moments about X :
$W \times a \cos \theta=F \times 2 a \sin \theta+G \times 2 a \cos \theta$

$$
\begin{equation*}
W=2 F \tan \theta+2 G \tag{1}
\end{equation*}
$$

$R(\rightarrow), \quad F=S$
$R(\uparrow), \quad W=R+G$

8 Substituting for W and F in equation (1):

$$
\begin{aligned}
R+G & =2 \mu_{1} R \tan \theta+2 G \\
R-G & =2 \mu_{1} R \tan \theta \\
R-\mu_{1} \mu_{2} R & =2 \mu_{1} R \tan \theta \quad\left(\text { Since } G=\mu_{2} S=\mu_{2} F=\mu_{2} \mu_{1} R\right) \\
\text { Hence } \frac{1-\mu_{1} \mu_{2}}{2 \mu_{1}} & =\tan \theta
\end{aligned}
$$

9 Let:

A and B be the ends of the ladder.
P be the normal reaction of the wall on the ladder at B,
R the normal reaction of the ground on the ladder at A F be the friction at between the ladder and the ground at A

Let the length of the ladder be $2 a$.
a Taking moments about A :
$W \times a \cos 60^{\circ}=P \times 2 a \cos 30^{\circ}$

$$
\begin{align*}
& P=\frac{W a \cos 60^{\circ}}{2 a \cos 30^{\circ}} \\
& P=\frac{W \times \frac{1}{2}}{2 \times \frac{\sqrt{3}}{2}} \\
& P=\frac{W}{2 \sqrt{3}} \tag{1}
\end{align*}
$$

$$
\begin{align*}
\text { b } & R(\uparrow), \quad R=W \tag{2}\\
& R(\rightarrow), \quad F=P \tag{3}
\end{align*}
$$

Now $F \leqslant \mu R$ since the ladder is in equilibrium (if not, ladder would slide)
Hence, $\quad P \leqslant \mu R \quad(b y(3))$

$$
\begin{aligned}
\frac{W}{2 \sqrt{3}} & \leqslant \mu R \quad(\text { by }(\mathbf{1})) \\
\frac{W}{2 \sqrt{3}} & \leqslant \mu W \quad(\text { by }(\mathbf{2})) \\
\mu & \geqslant \frac{\sqrt{3}}{6}
\end{aligned}
$$

9 c Let:
R^{\prime} be the normal reaction of the ground on the ladder at A
P^{\prime} be the normal reaction of the wall on the ladder at B,
l be the length of the ladder
Since the ladder is in limiting equilibrium, $F^{\prime}=\mu R^{\prime}$
$R(\uparrow), \quad R^{\prime}=W+w$
$\mathrm{R}(\rightarrow), \quad \mu R^{\prime}=P^{\prime}$
Taking moments about B :

$$
\begin{aligned}
\frac{W l \cos 60^{\circ}}{2}+\left(F^{\prime} \times l \sin 60^{\circ}\right) & =\left(R^{\prime} \times l \cos 60^{\circ}\right) \\
\frac{W}{4}+\left(\mu R^{\prime} \times \frac{\sqrt{3}}{2}\right) & =\frac{R^{\prime}}{2} \\
\frac{W}{4}+\left(\frac{\sqrt{3}}{5}(W+w) \times \frac{\sqrt{3}}{2}\right) & =\frac{W+w}{2} \quad\left(\text { since } R^{\prime}=W+w \text { and } \mu=\frac{\sqrt{3}}{5}\right) \\
W+\frac{6}{5}(W+w) & =2(W+w) \\
5 W+6 W+6 w & =10 W+10 w \\
W & =4 w \\
& \Rightarrow w=\frac{W}{4}
\end{aligned}
$$

10 Let:
T be the normal force of the peg on the rod at P, G be the frictional force at P,
S be the normal force of the peg on the rod at Q, F be the frictional force at Q.
a Taking moments about P :
$S \times 40=20 \times 25 \times \cos 30^{\circ}$

$$
\begin{gathered}
S=\frac{20 \times 25 \times \frac{\sqrt{3}}{2}}{40} \\
S=\frac{25 \sqrt{3}}{4} \mathrm{~N}
\end{gathered}
$$

Taking moments about Q :
$T \times 40=20 \times 15 \times \cos 30^{\circ}$

$$
\begin{aligned}
& T=\frac{20 \times 15 \times \frac{\sqrt{3}}{2}}{40} \\
& T=\frac{15 \sqrt{3}}{4} \mathrm{~N}
\end{aligned}
$$

$10 \mathrm{~b} R(\searrow)$

$$
\begin{equation*}
G+F=20 \cos 60^{\circ}=10 \tag{1}
\end{equation*}
$$

Since the rod is about to slip, friction is limiting and hence $G=\mu T, F=\mu S$.
From part a,

$$
\begin{aligned}
& G+F=\mu T+\mu S=\mu \times \frac{40 \sqrt{3}}{4}=10 \sqrt{3} \mu(\mathbf{2}) \\
& (\mathbf{1})=(\mathbf{2}) \Rightarrow \mu=\frac{1}{\sqrt{3}}
\end{aligned}
$$

11 a Let:
S be the normal reaction of the wall on the ladder at Y, R be the normal reaction of the ground on the ladder at X F be the friction at between the ladder and the ground at X $\tan \theta=\sqrt{3}$ so $\sin \theta=\frac{\sqrt{3}}{3}$ and $\cos \theta=\frac{1}{2}$
Ladder is in equilibrium.
Taking moments about X :

$$
\begin{aligned}
\frac{W l \cos \theta}{2}+9 W l \cos \theta & =S l \sin \theta \\
\frac{W}{4}+\frac{9 W}{2} & =\frac{\sqrt{3} S}{2} \\
\sqrt{3} S & =\frac{W}{2}+9 W \\
\sqrt{3} S & =\frac{19 W}{2} \\
S & =\frac{19 W}{2 \sqrt{3}}
\end{aligned}
$$

11 c Modelling the ladder as uniform allows us to assume the weight acts through the midpoint.
d i The reaction of the wall on the ladder will decrease. To understand why, consider how we took moments about X in part a

$$
\frac{W l \cos \theta}{2}+9 W l \cos \theta=S l \sin \theta
$$

The first term in this equation is the turning moment of the weight of the ladder, which acts at a distance $\frac{l}{2}$ from X. If the centre of mass of the ladder is more towards X, say $\frac{l}{a}$ where $a>2$, then this first term would decrease and hence S would also decrease.
ii Ladder remains in equilibrium when $S-F \leq P \leq S+F$
If S were to decrease, then this range of values for P would also decrease.
12 a

Taking moments about A
$M(A): 6 g \times 2=2 T \sin 40^{\circ}$
$T=\frac{6 \mathrm{~g}}{\sin 40^{\circ}}=91.47656 \ldots=91.5 \mathrm{~N}$ (1 d.p.)
b Consider all forces acting on $A B$

$$
\begin{aligned}
R(\uparrow): & V+T \sin 40^{\circ}=6 g \\
V & =6 \times 9.8-94.47656 \ldots \times \sin \left(40^{\circ}\right)=0 \mathrm{~N}
\end{aligned}
$$

$\mathrm{R}(\rightarrow): H=T \cos 40^{\circ}=70.075 \ldots=70.1 \mathrm{~N}$ (1 d.p.)
The force exerted on the rod by the wall is 70.1 N parallel to and towards the rod.

13 a Taking moments about A
$\mathrm{M}(A)$:
$m g \times a \cos 30^{\circ}=P \times 2 a \times \sin 30^{\circ}$

$$
\begin{aligned}
P & =\frac{m g a \cos 30^{\circ}}{2 a \sin 30^{\circ}} \\
& =\frac{m g a \frac{\sqrt{3}}{2}}{2 a \frac{1}{2}} \\
& =\frac{\sqrt{3}}{2} m g
\end{aligned}
$$

b $R(\uparrow): V=m g$
$\mathrm{R}(\rightarrow): H=-\frac{\sqrt{3}}{2} m g$
Magnitude of force at the hinge $=\sqrt{(m g)^{2}+\left(-\frac{\sqrt{3}}{2} m g\right)^{2}}=m g \sqrt{1+\frac{3}{4}}=\frac{\sqrt{7}}{2} m g$
Angle of force at hinge $\theta=\arctan \frac{1}{\left(\frac{\sqrt{3}}{2}\right)}=49.1^{\circ}$ above the horizontal away from the rod.

