Applications of forces 7B

1 From symmetry the tension in both strings is the same.

$$
\begin{aligned}
& R(\uparrow) \\
& T \sin 45^{\circ}+T \sin 45^{\circ}-5 g=0 \\
& \therefore 2 T \sin 45^{\circ}=5 g \\
& T=\frac{5 g}{2 \sin 45^{\circ}} \\
&=\frac{49 \sqrt{2}}{2} \\
& T=34.6 \mathrm{~N} \text { (3 s.f.) }
\end{aligned}
$$

2 a Let the tension in the string be $T \mathrm{~N}$

$$
\begin{aligned}
& R(\leftarrow) \\
& T \sin 30^{\circ}-10=0 \\
& \therefore T=\frac{10}{\sin 30^{\circ}} \\
& T=20 \mathrm{~N}
\end{aligned}
$$

$$
\text { b } \begin{aligned}
& R(\uparrow) \\
& T \cos 30^{\circ}-m g=0 \\
& m g=20 \cos 30^{\circ} \quad(\text { since } T=20 \mathrm{~N}) \\
& \therefore m=\frac{20 \cos 30^{\circ}}{g} \\
&=\frac{10 \sqrt{3}}{g} \\
&=1.8 \mathrm{~kg}(2 \text { s.f. })
\end{aligned}
$$

3 Let the tension in the string be $T \mathrm{~N}$.

$$
\begin{align*}
& R(\rightarrow) \\
& 8-T \sin \theta=0 \\
& \therefore T \sin \theta=8 \tag{1}\\
& R(\uparrow) \\
& T \cos \theta-12=0 \\
& \therefore T \cos \theta=12 \tag{2}
\end{align*}
$$

3 a Divide equation (1) by equation (2) to eliminate the tension T.

$$
\begin{aligned}
\frac{T \sin \theta}{T \cos \theta} & =\frac{8}{12} \\
\therefore \tan \theta & =\frac{2}{3} \\
\therefore \theta & =33.7^{\circ} \text { (3 s.f.) }
\end{aligned}
$$

b Substitute into equation (1)

$$
\begin{aligned}
T \sin 33.7^{\circ} & =8 \\
T & =\frac{8}{\sin 33.7^{\circ}} \\
& =14.4(3 \text { s.f. })
\end{aligned}
$$

4 Let the tension in the strings be $T \mathrm{~N}$ and $S \mathrm{~N}$ as shown in the figure.

$$
\begin{align*}
& R(\leftarrow) \\
& T \cos 60^{\circ}-S \cos 45^{\circ}=0 \\
& \therefore \frac{T}{2}-\frac{S}{\sqrt{2}}=0 \tag{1}\\
& \therefore T=S \sqrt{2} \\
& R(\uparrow) \\
& T \sin 60^{\circ}+S \sin 45^{\circ}-6 g=0 \tag{2}\\
& \mathrm{~T} \frac{\sqrt{3}}{2}+S \frac{1}{\sqrt{2}}=6 g
\end{align*}
$$

Substitute $T=S \sqrt{2}$ from (1) into equation (2)

$$
\begin{aligned}
S\left(\sqrt{2} \times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}}\right) & =6 g \\
S\left(\frac{\sqrt{3}+1}{\sqrt{2}}\right) & =6 g \\
S & =\frac{6 g \sqrt{2}}{(\sqrt{3}+1)} \\
& =3 g \sqrt{2}(\sqrt{3}-1) \\
& =30(2 \text { s.f. })
\end{aligned}
$$

and $T=6 g(\sqrt{3}-1)=43$ (2 s.f.)

5 a Let the tension in the string be T and the mass of the bead be m.

Resolve horizontally first to find T :

$$
\begin{aligned}
& R(\rightarrow) \\
& T \cos 30^{\circ}-T \cos 60^{\circ}-2=0
\end{aligned}
$$

$$
T\left(\cos 30^{\circ}-\cos 60^{\circ}\right)=2
$$

$$
\therefore T=\frac{2}{\cos 30^{\circ}-\cos 60^{\circ}}
$$

$$
=\frac{4}{\sqrt{3}-1}
$$

$$
=\frac{4(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}
$$

$$
=\frac{4(\sqrt{3}+1)}{2}
$$

$$
=2(\sqrt{3}+1)=5.46 \mathrm{~N}(3 \text { s.f. })
$$

b $R(\uparrow)$

$$
\begin{aligned}
T \sin 60^{\circ}+T \sin 30^{\circ}-m g & =0 \\
m g & =T\left(\sin 60^{\circ}+\sin 30^{\circ}\right) \\
m & =\frac{2}{g}(\sqrt{3}+1)\left(\frac{\sqrt{3}}{2}+\frac{1}{2}\right) \quad(\text { using } T=2(\sqrt{3}+1) \text { from part a) } \\
& =\frac{4+2 \sqrt{3}}{g} \\
& =0.76 \mathrm{~kg}(2 \text { s.f. })
\end{aligned}
$$

c Modelling the bead as smooth assumes there is no friction between it and the string.

6 Let the tension in the string be T and the mass of the bead be m.
a Resolve horizontally first to find T.

$$
\begin{aligned}
& R(\rightarrow) \\
& 2-T \cos 60^{\circ}-T \cos 30^{\circ}=0 \\
& T\left(\cos 60^{\circ}+\cos 30^{\circ}\right)=2
\end{aligned}
$$

$$
\therefore T=\frac{2}{\cos 60^{\circ}+\cos 30^{\circ}}
$$

$$
=\frac{4}{1+\sqrt{3}}
$$

$$
=\frac{4}{1+\sqrt{3}} \times \frac{\sqrt{3}-1}{\sqrt{3}-1} \quad \text { (to rationalise the denomiator) }
$$

$$
=2(\sqrt{3}-1)
$$

$$
=1.46 \text { (3 s.f.) }
$$

b $R(\uparrow)$

$$
\begin{aligned}
T \sin 60^{\circ}-T \sin 30^{\circ}-m g & =0 \\
m g & =T\left(\sin 60^{\circ}-\sin 30^{\circ}\right) \\
& =2(\sqrt{3}-1)\left(\frac{\sqrt{3}}{2}-\frac{1}{2}\right) \quad(\text { using } T=2(\sqrt{3}-1) \text { from a }) \\
& =(\sqrt{3}-1)^{2} \\
& =4-2 \sqrt{3} \\
m & =\frac{(4-2 \sqrt{3})}{g} \\
& =0.055 \mathrm{~kg}=55 \mathrm{~g}
\end{aligned}
$$

$7 \tan \theta=\frac{12}{5} \Rightarrow \sin \theta=\frac{12}{13}$ and $\cos \theta=\frac{5}{13}$
Let the normal reaction be $R \mathrm{~N}$.
a $\quad R(\rightarrow)$
$P \cos \theta-1=0$

$$
\begin{aligned}
\therefore P & =\frac{1}{\cos \theta} \\
& =\frac{13}{5} \\
P & =2.6
\end{aligned}
$$

7 b $R(\uparrow)$

$$
\begin{aligned}
R-P \sin \theta-2 & =0 \\
\therefore R & =P \sin \theta+2 \\
& =2.6 \times \frac{12}{13}+2 \\
& =2.4+2 \\
& =4.4
\end{aligned}
$$

8 a Consider the particle of mass $2 m \mathrm{~kg}$ first, as it has only two forces acting on it. This enables you to find the tension.

$$
\begin{aligned}
& R(\uparrow) \\
& T-2 m g=0 \\
& \therefore T=2 m g
\end{aligned}
$$

Consider the particle of mass $m \mathrm{~kg}$:
$R(\rightarrow)$
$T-F=0$
$\therefore F=T=2 m g$

$$
=19.6 \mathrm{~m}
$$

$R(\uparrow)$
$R-m g=0$

$$
\begin{aligned}
\therefore R & =m g \\
& =9.8 m
\end{aligned}
$$

b Let T^{\prime} be the new tension in the string.
Consider the particle of mas $2 m \mathrm{~kg}$:
$R(\uparrow): T^{\prime}=2 m g$

Consider the particle of mass $m \mathrm{~kg}$:
$R(\rightarrow)$
$T^{\prime} \cos 30^{\circ}-F^{\prime}=0$

$$
\begin{aligned}
& \therefore F^{\prime}=2 m g \times \frac{\sqrt{3}}{2} \\
&= \sqrt{3} m g \\
&=17 m(2 \text { s.f. }) \\
& R(\uparrow) \quad \\
& R^{\prime}+T^{\prime} \sin 30-m g=0 \\
& \therefore R^{\prime}=m g-T^{\prime} \sin 30 \\
&=m g-2 m g \times \frac{1}{2} \quad\left(\text { using } T^{\prime}=2 m g\right) \\
&=0
\end{aligned}
$$

9 Let the normal reaction be $R \mathrm{~N}$.

$$
\begin{aligned}
& R(\nearrow): \\
& \begin{aligned}
P-2 g \sin 45^{\circ} & =0 \\
\therefore P & =2 g \sin 45^{\circ} \\
& =g \sqrt{2} \\
& =14 \mathrm{~N}(2 \text { s.f. })
\end{aligned}
\end{aligned}
$$

10 Let the normal reaction be $R \mathrm{~N}$.

$$
\begin{aligned}
& R(\nearrow): \\
& \begin{aligned}
P \cos 45^{\circ}-4 g \sin 45^{\circ} & =0 \\
\therefore P & =\frac{4 g \sin 45^{\circ}}{\cos 45^{\circ}} \\
& =4 g \\
& =39 \text { (2 s.f. })
\end{aligned}
\end{aligned}
$$

$$
T-5 g=0
$$

$$
\therefore T=5 g
$$

Consider the 2 kg mass.

$$
R(\nwarrow)
$$

$$
R-2 g \cos \theta=0
$$

$$
\begin{aligned}
R & =2 g \times \frac{4}{5} \\
& =\frac{8 g}{5} \\
& =16 \mathrm{~N} \text { (2 s.f. })
\end{aligned}
$$

b $R(\nearrow)$
$T-F-2 g \sin \theta=0$

$$
F=T-2 g \sin \theta
$$

$$
=5 g-2 g \times \frac{3}{5} \quad(\text { using } T=5 g \text { from above })
$$

$$
=\frac{19 g}{5}
$$

$$
=37 \mathrm{~N} \text { (2 s.f.) }
$$

c Assuming the pulley is smooth means there is no friction between it and the string.

12 Let the normal reaction be $R \mathrm{~N}$.

First, resolve along the plane to find P as it is the only unknown when resolving in that direction.
$R(\nearrow)$

$$
\begin{aligned}
\therefore P & =\frac{5 \cos 45^{\circ}+20 \sin 45^{\circ}}{\cos 30^{\circ}} \\
& =\left(5 \times \frac{\sqrt{2}}{2}+20 \times \frac{\sqrt{2}}{2}\right) \times \frac{2}{\sqrt{3}} \\
& =\frac{25 \sqrt{2}}{\sqrt{3}} \\
& =\frac{25 \sqrt{6}}{3} \\
& =20.4 \text { (3 s.f.) }
\end{aligned}
$$

$R(\nwarrow)$
$R+P \sin 30^{\circ}+5 \sin 45^{\circ}-20 \cos 45^{\circ}=0$

$$
\begin{aligned}
R & =20 \cos 45^{\circ}-5 \sin 45^{\circ}-P \sin 30^{\circ} \quad\left(\text { as } P=\frac{25 \sqrt{6}}{3}\right) \\
R & =\frac{15}{\sqrt{2}}-\frac{25 \sqrt{6}}{6} \\
& =\frac{45 \sqrt{2}-25 \sqrt{6}}{6} \\
& =0.400(3 \text { s.f. })
\end{aligned}
$$

