Review exercise 1

1 a Produce a table for the values of log s and log t:

<table>
<thead>
<tr>
<th>log s</th>
<th>0.3010</th>
<th>0.6532</th>
<th>0.7924</th>
<th>0.8633</th>
<th>0.9590</th>
</tr>
</thead>
<tbody>
<tr>
<td>log t</td>
<td>−0.4815</td>
<td>0.0607</td>
<td>0.2455</td>
<td>0.3324</td>
<td>0.4698</td>
</tr>
</tbody>
</table>

which produces \(r = 0.9992 \)

b Since \(r \) is very close to 1, this indicates that log s by log t is very close to being linear, which means that \(s \) and \(t \) are related by an equation of the form \(t = ax^r \) (beginning of Section 1.1).

c Rearranging the equation:

\[
\log t = -0.9051 + 0.4437 \log s
\]

\[
\Rightarrow t = 10^{-0.9051 + 0.4437 \log s} = 10^{-0.9051} \times 10^{0.4437 \log s}
\]

\[
\Rightarrow t = 10^{-0.9051} \times s^{1.4437}
\]

and so \(a = 10^{-0.9051} = 0.1244 \) (4 s.f.) and \(n = 1.4437 \)

2 a Rearranging the equation:

\[
y = -0.2139 + 0.0172x
\]

\[
\Rightarrow \log t = -0.2139 + 0.0172P
\]

\[
\Rightarrow t = 10^{-0.2139 + 0.0172P} = 10^{-0.2139} \times 10^{0.0172P}
\]

\[
\Rightarrow t = 10^{-0.2139} \times (10^{0.0172})^P
\]

Therefore \(a = 10^{-0.2139} = 0.611 \) (3 s.f.) and \(b = 10^{0.0172} = 1.04 \) (3 s.f.).

b Not in the range of data (extrapolation).

3 a \[
r = \frac{59.524}{\sqrt{152.444 \times 26.589}} = 0.93494\]

(\(\text{the formulae for this is under S1 in the formula book.} \))

b Make sure your hypotheses are clearly written using the parameter \(\rho \):

\[
H_0 : \rho = 0, \quad H_1 : \rho > 0
\]

Test statistic: \(r = 0.935 \)

Critical value at 1% = 0.7155

(\(\text{Look up the value under 0.01 in the table for product moment coefficient; quote the figure in} \)

\(\text{full.} \))

\(0.935 > 0.7155 \)

Draw a conclusion in the context of the question:

So reject \(H_0 \) : levels of serum and disease are positively correlated.

4 \(r = -0.4063 \), critical value for \(n = 6 \) is \(-0.6084 \), so no evidence.
5 a \(H_0: \rho = 0 \)
\(H_1: \rho < 0 \)
From the data, \(r = -0.9313 \). Since the critical value for \(n = 5 \) is \(-0.8783\), there is sufficient evidence to reject \(H_0 \), i.e. at the 2.5\% level of significance, there is sufficient evidence to say that there is negative correlation between the number of miles done by a one-year-old car and its value.

b If a 1\% level of significance was used, then the critical value for \(n = 5 \) is \(-0.9343\) and so there would not be sufficient evidence to reject \(H_0 \).

6 a \[
P(\text{tourism}) = \frac{50}{148} = \frac{25}{74} = 0.338 \text{ (3 s.f.)}
\]

b The words ‘given that’ in the question tell you to use conditional probability:
\[
P(\text{no glasses} \mid \text{tourism}) = \frac{P(G' \cap T)}{P(T)} = \frac{23}{148} = \frac{23}{50} = 0.46
\]

c It often helps to write down which combinations you want:
\[
P(\text{right-handed}) = P(E \cap RH) + P(T \cap RH) + P(C \cap RH)
\]
\[
= \frac{30}{148} \times 0.8 + \frac{50}{148} \times 0.7 + \frac{68}{148} \times 0.75
\]
\[
= \frac{55}{74} = 0.743 \text{ (3 s.f.)}
\]

d The words ‘given that’ in the question tell you to use conditional probability:
\[
P(\text{engineering} \mid \text{right-handed}) = \frac{P(E \cap RH)}{P(RH)} = \frac{30}{148} \times 0.8 = \frac{12}{55} = 0.218 \text{ (3 s.f.)}
\]
7 a Start in the middle of the Venn diagram and work outwards. Remember the rectangle and those not in any of the circles. Your numbers should total 100.

\[\begin{array}{c}
G \\
\quad7
\end{array} \quad \begin{array}{c}
L \\
\quad6
\end{array} \quad \begin{array}{c}
D \\
\quad12
\end{array}
\]

\[\begin{array}{c}
9 \\
\quad10
\end{array} \quad \begin{array}{c}
10 \\
\quad5
\end{array} \quad \begin{array}{c}
41
\end{array}
\]

b \(P(G, L', D') = \frac{10}{100} = \frac{1}{10} = 0.1\)

c \(P(G', L', D') = \frac{41}{100} = 0.41\)

d \(P(\text{only two attributes}) = \frac{9 + 7 + 5}{100} = \frac{21}{100} = 0.21\)

e The word ‘given’ in the question tells you to use conditional probability:
\(P(G|L \cap D) = \frac{P(G \cap L \cap D)}{P(L \cap D)}\)
\(= \frac{10}{100} \div \frac{15}{100} = \frac{10}{15} = \frac{2}{3} = 0.667 (3 \text{ s.f.})\)

8 a \(P(B \cup T) = P(B) + P(T) - P(B \cap T)\)
\(0.6 = 0.25 + 0.45 - P(B \cap T)\)
\(P(B \cap T) = 0.1\)

b When drawing the Venn diagram remember to draw a rectangle around the circles and add the probability 0.4.
Remember the total in circle \(B = 0.25\) and the total in circle \(T = 0.45\).
8 c The words ‘given that’ in the question tell you to use conditional probability:

\[P(B \cap T' \mid B \cup T) = \frac{0.15}{0.6} = \frac{1}{4} = 0.25 \]

9 a

There are two different situations where the second counter drawn is blue. These are BB and RB. Therefore the probability is:

\[P(\text{both blue} \mid \text{2nd blue}) = \frac{\frac{3}{8} \times \frac{5}{7} + \frac{5}{8} \times \frac{3}{7}}{\frac{21}{56} + \frac{3}{8}} = \frac{3}{8} \]

b i There are two different situations where the second counter drawn is blue. These are BB and RB. Therefore the probability is: \(\frac{3}{8} \times \frac{2}{7} + \frac{5}{8} \times \frac{3}{7} = \frac{6 + 15}{56} = \frac{21}{56} = \frac{3}{8} = 0.375 \).

ii \(P(\text{both blue} \mid \text{2nd blue}) = \frac{\frac{3}{8} \times \frac{2}{7}}{\frac{21}{56}} = \frac{2}{7} \)

10 a The first two probabilities allow two spaces in the Venn diagram to be filled in.

\[P(\text{both blue} \mid \text{2nd blue}) = \frac{\text{P(both blue and 2nd blue)}}{\text{P(2nd blue)}} = \frac{\frac{3}{8} \times \frac{2}{7}}{\frac{21}{56}} = \frac{2}{7} \]

Finally, \(P(\text{both blue} \mid \text{2nd blue}) = \frac{3}{8} \).

The completed Venn diagram is therefore:

b \(P(A) = 0.34 + 0.15 = 0.49 \) and \(P(B) = 0.13 + 0.15 = 0.28 \)

c \(P(A \mid B') = \frac{P(A \cap B')}{P(B')} = \frac{0.34}{0.72} = \frac{0.34}{0.72} = 0.472 \) (3 d.p.).

d If \(A \) and \(B \) are independent, then \(P(A) = P(A \mid B) = P(A \mid B') \). From parts b and c, this is not the case. Therefore they are not independent.

d \(P(A \cap B) = P(A) \times P(B) \Rightarrow P(A) = P(A \cap B) \div P(B) = 0.15 \div 0.3 = 0.5 \)
11 b \[P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.5 + 0.3 - 0.15 = 0.65 \Rightarrow P(A' \cap B') = 1 - 0.65 = 0.35 \]

c Since \(B \) and \(C \) are mutually exclusive, they do not intersect. The intersection of \(A \) and \(C \) should be 0.1 but \(P(A) = 0.5 \), allowing \(P(A \cap B' \cap C') \) to be calculated. The filled-in probabilities sum to 0.95, and so \(P(A' \cap B' \cap C') = 0.05 \). Therefore, the filled-in Venn diagram should look like:

![Venn Diagram](image)

d i \[P(A | C) = \frac{P(A \cap C)}{P(C)} = \frac{0.1}{0.4} = 0.25 \]

ii The set \(A \cap (B \cup C') \) must be contained within \(A \). First find the set \(B \cup C' \): this is made up from four distinct regions on the above Venn diagram, with labels 0.15, 0.15, 0.25 and 0.05. Restricting to those regions that are also contained within \(A \) leaves those labelled 0.15 and 0.25. Therefore, \(P(A \cap (B \cup C')) = 0.15 + 0.25 = 0.4 \)

iii From part ii, \(P(B \cup C') = 0.15 + 0.15 + 0.25 + 0.05 = 0.6 \). Therefore \[P(A | (B \cup C')) = \frac{P(A \cap (B \cup C'))}{P(B \cup C')} = \frac{0.4}{0.6} = \frac{2}{3} \]

12 a There are two different events going on: ‘Joanna oversleeps’ \((O)\) and ‘Joanna is late for college’ \((L)\). From the context, we cannot assume that these are independent events. Drawing a Venn diagram, none of the regions can immediately be filled in. We are told that \(P(O) = 0.15 \) and so \(P(O' \text{ does not oversleep}) = P(O') = 0.85 \). The other two statements can be interpreted as \(\frac{P(L \cap O)}{P(O)} = 0.75 \) and \(\frac{P(L \cap O')}{P(O')} = 0.1 \)

Filling in the first one: \[\frac{P(L \cap O)}{P(O)} = 0.75 \Rightarrow \frac{P(L \cap O)}{0.15} = 0.75 \Rightarrow P(L \cap O) = 0.1125 \]

Also, \(\frac{P(L \cap O')}{0.85} = 0.1 \Rightarrow P(L \cap O') = 0.085 \)

Therefore, \(P(L) = P(L \cap O) + P(L \cap O') = 0.1125 + 0.085 = 0.1975 \)

b \[P(L | O) = \frac{P(L \cap O)}{P(O)} = \frac{0.1125}{0.1975} = \frac{45}{79} = 0.5696 \text{ (4 s.f.)} \]
13 a Drawing a diagram will help you to work out the correct area:

Using \(z = \frac{x - \mu}{\sigma} \). As 91 is to the left of 100, your \(z \) value should be negative.

\[
P(X < 91) = P\left(Z < \frac{91 - 100}{15} \right)
= P(Z < -0.6)
= 1 - 0.7257
= 0.2743
\]

(The tables give \(P(Z < 0.6) = P(Z > -0.6) \), so you want 1 – this probability.)

b

As 0.2090 is not in the table of percentage points you must work out the larger area:

\[
1 - 0.2090 = 0.7910
\]

Use the first table or calculator to find the \(z \) value. It is positive as \(100 + k \) is to the right of 100.

\[
P(X > 100 + k) = 0.2090 \text{ or } P(X < 100 + k) = 0.791
\]

\[
\frac{100 + k - 100}{15} = 0.81
\]

\[
k = 12
\]
14 a Let H be the random variable ~ height of athletes, so $H \sim N(180, 5.2^2)$

Drawing a diagram will help you to work out the correct area:

Using $z = \frac{x - \mu}{\sigma}$. As 188 is to the right of 180 your z value should be positive. The tables give $P(Z < 1.54)$ so you want $1 -$ this probability:

$$P(H > 188) = P \left(Z > \frac{188 - 100}{5.2} \right)$$
$$= P \left(Z > 1.54 \right)$$
$$= 1 - 0.9382$$
$$= 0.0618$$

b Let W be the random variable ~ weight of athletes, so $W \sim N(85, 7.1^2)$

Using $z = \frac{x - \mu}{\sigma}$. As 97 is to the right of 85, your z value should be positive.

$$P(W < 97) = P \left(Z < \frac{97 - 85}{7.1} \right)$$
$$= P \left(Z < 1.69 \right)$$
$$= 0.9545$$

c $P(W > 97) = 1 - P(W < 97)$, so

$$P(H > 188 \& W > 97) = 0.618(1 - 0.9545)$$
$$= 0.00281$$

d Use the context of the question when you are commenting:

The evidence suggests that height and weight are positively correlated.linked, so assumption of independence is not sensible.
15 a Use the table of percentage points or calculator to find z. You must use at least the four decimal places given in the table.

$P(Z > a) = 0.2$

$a = 0.8416$

$P(Z < b) = 0.3$

$b = -0.5244$

0.5244 is negative since 1.65 is to the left of the centre. 0.8416 is positive as 1.78 is to the right of the centre.

Using $z = \frac{x - \mu}{\sigma}$:

$\frac{1.78 - \mu}{\sigma} = 0.8416 \Rightarrow 1.78 - \mu = 0.8416\sigma$ (1)

$\frac{1.65 - \mu}{\sigma} = -0.5244 \Rightarrow 1.65 - \mu = 0.5244\sigma$ (2)

Solving simultaneously, (1) − (2):

$0.13 = 1.366\sigma$

$\sigma = 0.095$ m

Substitute in (1): $1.78 - \mu = 0.8416 \times 0.095$

$\mu = 1.70$ m

b

Using $z = \frac{x - \mu}{\sigma}$:

$P(\text{height} > 1.74) = P \left(z > \frac{1.74 - 1.70}{0.095} \right)$

$= P(z > 0.42)$ (the tables give $P(Z < 0.42)$ so you need $1 - \text{this probability}$)

$= 1 - 0.6628$

$= 0.3372$ (calculator gives 0.3369)

16 a $P(D < 21.5) = 0.32$ and $P(Z < a) = 0.32 \Rightarrow a = -0.467$. Therefore

$\frac{21.5 - \mu}{\sigma} = -0.467 \Rightarrow 21.5 - 22 = -0.467\sigma \Rightarrow \sigma = \frac{0.5}{0.467} = 1.071$ (4 s.f.).

b $P(21 < D < 22.5) = P(D < 22.5) - P(D < 21) = 0.5045$ (4 s.f.).

c $P(B \geq 10) = 1 - P(B \leq 9) = 1 - 0.01899 = 0.98101$ (using 4 s.f. for the value given by the binomial distribution) or 0.981 (4 s.f.).
17 a Let \(W \) be the random variable ‘the number of white plants’. Then \(W \sim B(12, 0.45) \) (‘batches of 12’: \(n = 12 \); ‘45% have white flowers’: \(p = 0.45 \)).

\[
P(W = 5) = \binom{12}{5} 0.45^5 0.55^7 \quad (\text{you can also use tables: } P(W \leq 5) - P(W \leq 4))
\]

\[
= 0.2225
\]

\(b \) Batches of 12, so: 7 white, 5 coloured; 8 white, 4 coloured; etc.

\[
P(W \geq 7) = 1 - P(W \leq 6)
\]

\[
= 1 - 0.7393
\]

\[
= 0.2607
\]

c Use your answer to part \(b \): \(p = 0.2607 \), \(n = 10 \):

\[
P(\text{exactly 3}) = \binom{10}{3} (0.2607)^3 (1 - 0.2607)^7
\]

\[
= 0.2567
\]

d A normal approximation is valid, since \(n \) is large (> 50) and \(p \) is close to 0.5. Therefore

\[
\mu = np = 150 \times 0.45 = 67.5 \quad \text{and} \quad \sigma = \sqrt{np(1-p)} = \sqrt{67.5 \times 0.55} = \sqrt{37.125} = 6.093 \quad (4 \text{ s.f.})
\]

\[
P(X > 75) \approx P(N > 75.5) = 0.0946 \quad (3 \text{ s.f.})
\]

18 a Using the binomial distribution, \(P(B = 35) = \binom{80}{35} 0.48^{35} \times 0.52^{45} = 0.06703 \).

\(b \) A normal approximation is valid, since \(n \) is large (> 50) and \(p \) is close to 0.5. Therefore

\[
\mu = np = 80 \times 0.48 = 38.4 \quad \text{and} \quad \sigma = \sqrt{np(1-p)} = \sqrt{38.4 \times 0.52} = \sqrt{19.968} = 4.469 \quad (4 \text{ s.f.})
\]

\[
P(B = 35) \approx P(34.5 < N < 35.5) = 0.0668 \quad (3 \text{ s.f.})
\]

Percentage error is

\[
\frac{0.06703 - 0.0668}{0.06703} = 0.34%.
\]

19 Remember to identify which is \(H_0 \) and which is \(H_1 \). This is a one-tail test since we are only interested in whether the time taken to solve the puzzle has reduced. You must use the correct parameter (\(\mu \)):

\(H_0 \): \(\mu = 18 \) \quad \(H_1 \): \(\mu < 18 \)

Using

\[
z = \frac{x - \mu}{\sigma}, \quad z = \frac{(16.5 - 18)}{\frac{1}{\sqrt{15}}} = -1.9364...
\]

Using the percentage point table and quoting the figure in full:

5% one tail c.v. is \(z = -1.6449 \)

\(-1.9364 < -1.6449\), so significant or reject \(H_0 \) or in critical region.

State your conclusion in the context of the question:

There is evidence that the (mean) time to complete the puzzles has reduced.

Or Robert is getting faster (at doing the puzzles).
20 a \(P(Z < a) = 0.05 \Rightarrow -1.645. \) Using that \(P(L < 1.7) = 0.05 \) means that
\[
\frac{1.7 - \mu}{0.4} = -1.645 \Rightarrow 1.7 - \mu = -0.658 \Rightarrow \mu = 2.358
\]

b \(P(L > 2.3) = 0.5576 \) (4 s.f.) and so, using the binomial distribution,
\[
P(B \geq 6) = 1 - P(B \leq 5) = 1 - 0.4758 = 0.5242 \) (4 s.f.).

c It is thought that the mean length of the female rattlesnakes is 1.9 m, and a hypothesis test is needed to conclude whether the mean length is not equal to 1.9 m. Therefore,
\[H_0 : \mu = 1.9\]
\[H_1 : \mu \neq 1.9\]
Sample size: 20. Therefore, the sample population is initially thought to have distribution
\[
\bar{M} \sim N\left(1.9, \frac{0.3^2}{20}\right).
\]
By using the inverse normal distribution,
\[
P(\bar{M} < 1.768) = 0.025\)
\[
P(\bar{M} > 2.032) = 0.025\), meaning that the critical region is below 1.768 and above 2.032

d There is sufficient evidence to reject \(H_0 \), since 2.09 > 2.032; i.e. there is sufficient evidence to say, at the 5% level, that the mean length of the female rattlesnakes is not equal to 1.9 metres.

21 It is thought that the daily mean temperature in Hurn is less than 12 °C, and so a hypothesis test is needed to conclude whether, at the 5% level of significance, the mean temperature is less than 12 °C. Therefore,
\[H_0 : \mu = 12\]
\[H_1 : \mu < 12\]
Sample size: 20. Therefore, the sample population is initially thought to have distribution
\[
\bar{T} \sim N\left(12, \frac{2.3^2}{20}\right).
\]
By using the inverse normal distribution,
\[
P(\bar{T} < 11.154) = 0.05,\) meaning that the critical region consists of all values below 11.154. Since 11.1 < 11.154, there is sufficient evidence to reject \(H_0 \); i.e. there is sufficient evidence to say, at the 5% level, that the mean daily temperature in Hurn is less than 12 °C.

Challenge

1 a Since \(A \) and \(B \) could be mutually exclusive, \(P(A \cap B) \geq 0 \). Since \(P(A \cap B) \leq P(B) = 0.3 \), we have that \(0 \leq P(A \cap B) \leq 0.3 \) and so \(q = P(A \cap B') = P(A) - P(A \cap B) \). Therefore \(0.4 \leq p \leq 0.7 \)

b First, \(P(B \cap C) \leq P(B) = 0.3 \) and so \(q \leq P(B \cap C) - P(A \cap B \cap C) \leq 0.25 \). Moreover, it is possible to draw a Venn diagram where \(q = 0 \), and so \(0 \leq q \leq 0.25 \)
Challenge

2 a We wish to use a hypothesis test to determine (at the 10% significance level) whether the support for the politician is 53%. A normal distribution is suitable, and we use the model given by

\[\mu = np = 300 \times 0.53 = 159 \quad \text{and} \quad \sigma = \sqrt{np(1-p)} = \sqrt{159 \times 0.47} = \sqrt{74.73} = 8.645 \quad (4 \text{ s.f.}). \]

Therefore,

\[H_0 : \mu = 159 \]

\[H_1 : \mu \neq 159 \]

By using the inverse normal distribution, \(P(\bar{X} < 144.78) = 0.05 \) and \(P(\bar{X} > 173.22) = 0.05 \) (2 d.p.) and so the critical region consists of the values below 144.78 and above 173.22.

b Since 173 is not within the critical region, there is not sufficient evidence to reject \(H_0 \) at the 10% significance level; i.e. there is not sufficient evidence to say, at the 10% level, that the politician’s claim that they have support from 53% of the constituents is false.