Conditional probability Mixed exercise 2

1 a \(P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.4 + 0.35 - 0.2 = 0.55 \)

b \(P(A' \cap B') = 1 - P(A \cup B) = 1 - 0.55 = 0.45 \)

c \(\frac{P(B|A)}{P(A)} = \frac{0.2}{0.4} = 0.5 \)

d \(\frac{P(A'|B)}{P(B)} = \frac{P(B) - P(A \cap B)}{P(B)} = \frac{0.15}{0.35} = 0.429 \) (3 s.f.)

2 a Work out each region of the Venn diagram from the information provided in the question.

First, as \(J \) and \(L \) are mutually exclusive, \(P(J \cap L) = \emptyset \)
So \(P(J' \cap K' \cap L') = P(J) - P(J \cap K) = 0.25 - 0.1 = 0.15 \)

As \(K \) and \(L \) are independent \(P(K \cap L) = P(K) \times P(L) = 0.45 \times 0.15 = 0.0675 \)
So \(P(L' \cap K') = P(L) - P(L \cap K) = 0.15 - 0.0625 = 0.0825 \)
And \(P(K' \cap J' \cap L') = P(K) - P(J \cap K) - P(K \cap L) = 0.45 - 0.1 - 0.0675 = 0.2825 \)

Find the outer region by subtracting the sum of all the other regions from 1
\(P(J' \cap K' \cap L') = 1 - 0.15 - 0.1 - 0.2825 - 0.0675 - 0.0825 = 0.3175 \)

b i \(P(J \cup K) = 0.15 + 0.1 + 0.2825 + 0.0675 = 0.6 \)

ii \(P(J' \cap L') = 0.2825 + 0.3175 = 0.6 \)

iii \(P(J|K) = \frac{P(J \cap K)}{P(K)} = \frac{0.1}{0.45} = 0.222 \) (3 s.f.)

iv \(P(K|J' \cap L') = \frac{P(K \cap (J' \cap L'))}{P(J' \cap L')} = \frac{0.2825}{0.6} = 0.471 \) (3 s.f.)
3

a \(P(F \cap S^\prime) + P(S \cap F^\prime) = P(F) - P(F \cap S) + P(F) - P(F \cap S) \)
\[
= \frac{35 - 27 + 45 - 27}{60} = \frac{26}{60} = 0.433 \text{ (3 s.f.)}
\]

b \(P(F|S) = \frac{P(F \cap S)}{P(S)} = \frac{27}{45} = 0.6 \)

c \(P(S|F^\prime) = \frac{P(S \cap F^\prime)}{P(F^\prime)} = \frac{45 - 27}{60 - 35} = \frac{18}{25} = 0.72 \)

d There are 6 students that study just French and wear glasses \((8 \times 0.75 = 6) \) and 9 students that study just Spanish and wear glasses \((18 \times 0.5 = 9) \), so the required probability is
\[
P(\text{studies one language and wears glasses}) = \frac{6 + 9}{60} = \frac{15}{60} = 0.25
\]

e There are 26 students studying one language (from part a). Of these, 15 wear glasses (from part d).
\[
P(\text{wears glasses|studies one language}) = \frac{15}{26} = 0.577 \text{ (3 s.f.)}
\]

4

a

\[
\begin{array}{c}
\text{G} \\
\text{R} \\
\end{array}
\begin{array}{c}
\frac{5}{14} \\
\frac{9}{14} \\
\end{array}
\begin{array}{c}
\text{R} \\
\text{G} \\
\end{array}
\begin{array}{c}
\frac{6}{14} \\
\frac{8}{14} \\
\end{array}
\begin{array}{c}
\text{G} \\
\text{R} \\
\end{array}
\begin{array}{c}
\frac{5}{14} \\
\frac{9}{14} \\
\end{array}
\]

b i \(P(GG) = \frac{9}{15} \times \frac{8}{14} = \frac{3 \times 4}{5 \times 7} = \frac{12}{35} = 0.343 \text{ (3 s.f.)} \)

ii There are two different ways to obtain balls that are different colours:
\[
P(RG) + P(GR) = \left(\frac{6}{15} \times \frac{9}{14} \right) + \left(\frac{9}{15} \times \frac{6}{14} \right) = \frac{2 \times 9}{5 \times 7} = \frac{18}{35} = 0.514 \text{ (3 s.f.)}
\]

c There are 4 different outcomes:
\[
P(\text{RRR}) + P(\text{RGR}) + P(\text{GRR}) + P(\text{GGR})
\]
\[
= \left(\frac{6}{15} \times \frac{5}{14} \times \frac{4}{13} \right) + \left(\frac{6}{15} \times \frac{9}{14} \times \frac{5}{13} \right) + \left(\frac{9}{15} \times \frac{6}{14} \times \frac{5}{13} \right) + \left(\frac{9}{15} \times \frac{8}{14} \times \frac{6}{13} \right)
\]
\[
= \frac{120 + 270 + 270 + 432}{2730} = \frac{1092}{2730} = 0.4
\]
4 d The only way for this to occur is to draw a green ball each time. The corresponding probability is:

\[P(GGGG) = \frac{9}{15} \times \frac{8}{14} \times \frac{7}{13} \times \frac{6}{12} = \frac{3 \times 2}{5 \times 3} = \frac{6}{65} = 0.0923 \text{ (3 s.f.)} \]

5 a Either Colin or Anne must win both sets. Therefore the required probability is:

\[P(\text{match over in two sets}) = (0.7 \times 0.8) + (0.3 \times 0.6) = 0.56 + 0.18 = 0.74 \]

b \[P(\text{Anne wins}\mid \text{match over in two sets}) = \frac{0.7 \times 0.8}{0.74} = \frac{0.56}{0.74} = 0.757 \text{ (3 s.f.)} \]

c The three ways that Anne can win the match are: wins first set, wins second set; wins first set, loses second set, wins tiebreaker; loses first set, wins second set, wins tiebreaker.

\[P(\text{Anne wins match}) = (0.7 \times 0.8) + (0.7 \times 0.2 \times 0.55) + (0.3 \times 0.4 \times 0.55) = 0.56 + 0.077 + 0.066 = 0.703 \]

6 a There are 20 kittens with neither black nor white paws (75 – 26 – 14 – 15 = 20).

\[P(\text{neither white or black paws}) = \frac{20}{75} = \frac{4}{15} = 0.267 \text{ (3 s.f.)} \]

b There are 41 kittens with some black paws (26 + 15 = 41).

\[P(\text{black and white paws}\mid \text{some black paws}) = \frac{15}{41} = 0.366 \text{ (3 s.f.)} \]

c This is selection without replacement (since the first kitten chosen is not put back).

\[P(\text{both kittens have all black paws}) = \frac{26}{75} \times \frac{25}{74} = \frac{13}{3 \times 37} = \frac{13}{111} = 0.117 \text{ (3 s.f.)} \]

d There are 29 kittens with some white paws (14 + 15 = 29).

\[P(\text{both kittens have some white paws}) = \frac{29}{75} \times \frac{28}{74} = \frac{812}{5550} = 0.146 \text{ (3 s.f.)} \]

7 a Using the fact that \(A \) and \(B \) are independent: \(P(A) \times P(B) = P(A \cap B) \Rightarrow P(B) = P(A \cap B) = \frac{0.12}{0.4} = 0.3 \)

b Use the addition formula to find \(P(A \cup B) \)

\[P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.4 + 0.3 - 0.12 = 0.58 \]

\[P(A' \cap B') = 1 - P(A \cup B) = 1 - 0.58 = 0.42 \]
7 e As \(A \) and \(C \) are mutually exclusive
\[
P(A \cap B' \cap C') = P(A) - P(A \cap B) = 0.4 - 0.12 = 0.28
\]
\[
P(C \cap A' \cap B') = P(C) - P(B \cap C) = 0.4 - 0.1 = 0.3
\]
\[
P(B \cap A' \cap C') = P(B) - P(A \cap B) - P(B \cap C) = 0.3 - 0.12 - 0.1 = 0.08
\]
Find the outer region by subtracting the sum of all the other regions from 1
\[
P(A' \cap B' \cap C') = 1 - 0.28 - 0.12 - 0.08 - 0.1 - 0.3 = 0.12
\]
\[
\begin{align*}
\text{A} & \quad 0.28 \\
\text{B} & \quad 0.08 \\
\text{C} & \quad 0.1 \\
\text{0.12} & \quad 0.3 \\
\text{0.12} & \quad \text{ } \\
\end{align*}
\]

7 f i \[
P(B|C) = \frac{P(B \cap C)}{P(C)} = \frac{0.1}{0.4} = 0.25
\]

7 f ii The required region must be contained within \(A \), and not include \(B \) (the condition on \(C \) is irrelevant since \(A \) and \(C \) are mutually exclusive). Therefore, \(P(A \cap (B' \cup C)) = 0.28 \)

8 a It may be that neither team scores in the match, and it is a 0–0 draw.

8 b \[
P(\text{team A scores first}) = P(\text{team A scores first and wins}) + P(\text{team A scores first and does not win})
\]
So \[
P(\text{team A scores first and does not win}) = 0.6 - 0.48 = 0.12
\]

8 c From the question \(P(\text{A wins|B scores first}) = 0.3 \). Using the multiplication formula gives
\[
P(\text{A wins|B scores first}) = \frac{P(\text{A wins \cap B scores first})}{P(B \text{ scores first})} = 0.3
\]
\[
\Rightarrow P(\text{A wins \cap B scores first}) = 0.3 \times 0.35 = 0.105
\]
Now find the required probability
\[
P(\text{B scores first|A wins}) = \frac{P(\text{A wins \cap B scores first})}{P(\text{A wins})} = \frac{0.105}{0.48 + 0.105} = \frac{0.105}{0.585} = 0.179 \text{ (3 s.f.)}
\]

Challenge

8 a Let \(P(A \cap B) = k \)
As \(P(A \cap B) \leq P(B) \Rightarrow k \leq 0.2 \)
\(A \) and \(B \) could be mutually exclusive, meaning \(P(A \cap B) = 0 \), so \(0 \leq k \leq 2 \)
Now, \(P(A \cap B') = P(A) - P(A \cap B) \), so \(p = 0.6 - k \Rightarrow 0.4 \leq p \leq 0.6 \)

© Pearson Education Ltd 2017. Copying permitted for purchasing institution only. This material is not copyright free.
Challenge

b Use the fact that \(P(A \cap C) = P(A \cap B \cap C) + P(A \cap B' \cap C) \)
So \(P(A \cap B' \cap C) = P(A \cap C) - P(A \cap B \cap C) = P(A \cap C) - 0.1 \)

Consider the range of \(P(A \cap C) \)
\(P(A \cap C) \leq P(A) \Rightarrow P(A \cap C) \leq 0.6 \)

By the multiplication formula \(P(A \cup C) = P(A) + P(C) - P(A \cap C) \)
So \(P(A \cap C) = P(A) + P(C) - P(A \cup C) = 1.3 - P(A \cup C) \)
As \(P(A \cup C) \leq 1 \Rightarrow P(A \cap C) \geq 0.3 \)

So \(0.3 \leq P(A \cap C) \leq 0.6 \) and as \(P(A \cap B' \cap C) = P(A \cap C) - 0.1 \) this gives the result that
\(0.3 - 0.1 \leq P(A \cap B' \cap C) \leq 0.6 - 0.1 \), so \(0.2 \leq q \leq 0.5 \)