Parametric equations 8A

1 a x = t - 2so t = x + 2(1) $v = t^2 + 1$ (2)Substitute (1) into (2): $y = (x+2)^2 + 1$ $=x^{2}+4x+4+1$ $\therefore v = x^2 + 4x + 5$ $x = t - 2, -4 \le t \le 4$ So the domain of f(x) is $-6 \le x \le 2$. $v = t^2 + 1, -4 \le t \le 4$ So the range of f(x) is $1 \le y \le 17$. **b** x = 5 - t(1) so t = 5 - x $v = t^2 - 1$ (2) Substitute (1) into (2): $v = (5-x)^2 - 1$ $=25-10x+x^{2}-1$ $\therefore v = x^2 - 10x + 24$ $x = 5 - t, t \in \mathbb{R}$ So the domain of f(x) is $x \in \mathbb{R}$. $y = t^2 - 1, t \in \mathbb{R}$ So the range of f(x) is $y \ge -1$. **c** $x = \frac{1}{4}$ so $t = \frac{1}{r}$ (1) y = 3 - t (2) Substitute (1) into (2): $y=3-\frac{1}{r}$ $x = \frac{1}{t}, t \neq 0$ So the domain of f(x) is $x \neq 0$. $v = 3 - t, t \neq 0$ Range of f(x) is $y \neq 3$.

d x = 2t + 1so $t = \frac{x-1}{2}$ (1) $y = \frac{1}{t}$ (2)Substitute (1) into (2): $y = \frac{1}{x - 1}$ $y = \frac{2}{r-1}$ x = 2t + 1, t > 0So the domain of f(x) is x > 1. $y = \frac{1}{t}, t > 0$ So the range of f(x) is y > 0. e $x = \frac{1}{t-2}$ so $t - 2 = \frac{1}{r}$ $t = 2 + \frac{1}{x} \qquad (1)$ $y = t^2$ (2)Substitute (1) into (2): $y = \left(2 + \frac{1}{r}\right)^2$ $y = \left(\frac{2x+1}{r}\right)^2$ $x = \frac{1}{t-2}, t > 2$ So the domain of f(x) is x > 0. $v = t^2, t > 2$ So the range of f(x) is y > 4.

1

$$f \quad x = \frac{1}{t+1}$$

so $t+1 = \frac{1}{x}$
 $t = \frac{1}{x} - 1$ (1)
 $y = \frac{1}{t-2}$ (2)
Substitute (1) into (2):
 $y = \frac{1}{\frac{1}{x} - 1 - 2}$
 $= \frac{1}{\frac{1}{x} - 3}$
 $= \frac{1}{\frac{1-3x}{x}}$
 $\therefore y = \frac{x}{1-3x}$

$$x = \frac{1}{t+1}, \ t > 2$$

So the domain of f(x) is $0 < x < \frac{1}{3}$

$$y = \frac{1}{t-2}, t > 2, t > 2$$

So the range of f(x) is y > 0.

2 a i $x = 2\ln(5-t)$ $\frac{1}{2}x = \ln(5-t)$ $e^{\frac{1}{2}x} = 5-t$ So $t = 5-e^{\frac{1}{2}x}$ Substitute $t = 5-e^{\frac{1}{2}x}$ into $y = t^2 - 5$: $y = (5-e^{\frac{1}{2}x})^2 - 5$ $= 25-10e^{\frac{1}{2}x} + e^x - 5$ $= 20-10e^{\frac{1}{2}x} + e^x$ $x = 2\ln(5-t), t < 4$ When $t = 4, x = 2\ln 1 = 0$ and as t increases $2\ln(5-t)$ decreases. So the range of the parametric function for x is x > 0. Hence the Cartesian equation is $y = 20 - 10e^{\frac{1}{2}x} + e^x, x > 0$

ii $y = t^2 - 5, t < 4$

 $y = t^2 - 5$ is a quadratic function with minimum value -5 at t = 0. So the range of the parametric function for y is $y \ge -5$. Hence the range of f(x) is $y \ge -5$.

b i
$$x = \ln (t+3)$$

 $e^{x} = t+3$
 $e^{x} - 3 = t$
Substitute $t = e^{x} - 3$ into $y = \frac{1}{t+5}$:
 $y = \frac{1}{e^{x} - 3 + 5} = \frac{1}{e^{x} + 2}$
 $x = \ln (t+3), t > -2$
When $t = -2, x = \ln 1 = 0$
and as t increases, $\ln (t+3)$ increases.
So the range of the parametric function
for x is $x > 0$.

Hence the Cartesian equation is

$$y = \frac{1}{\mathrm{e}^x + 2}, \ x > 0$$

2 **b** ii $y = \frac{1}{t+5}, t > -2$ When $t = -2, y = \frac{1}{3}$ and as t increases, $\frac{1}{t+5}$ decreases towards zero. So the range of the parametric function for y is $0 < y < \frac{1}{3}$ Hence the range of f(x) is $0 < y < \frac{1}{3}$ **c** i $x = e^t$ So $y = e^{3t} = (e^t)^3 = x^3$ (Note that since y is a power of x there is no need to substitute for t.) $x = e^t, t \in \mathbb{R}$ The range of the parametric function for x is x > 0.

Hence the Cartesian equation is $y = x^3$, x > 0

ii $y = e^{3t}, t \in \mathbb{R}$

The range of the parametric function for *y* is y > 0.

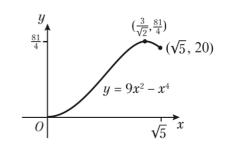
Hence the range of f(x) is y > 0.

3 a $x = \sqrt{t}$ so $x^2 = t$ Substitute $t = x^2$ into y = t(9-t): $y = x^2(9-x^2)$ $= 9x^2 - x^4$ $x = \sqrt{t}, \ 0 \le t \le 5$ The range of the parametric function for x is $0 \le x \le \sqrt{5}$. Hence the Cartesian equation is

 $v = 9x^2 - x^4, \ 0 \le x \le \sqrt{5}$

 $y = t(9-t), \ 0 \le t \le 5$ When t = 0, y = 0; when t = 5, y = 20; and y = t(9-t) is a quadratic function with maximum value $\frac{81}{4}$ at $t = \frac{9}{2}$ So the range of the parametric function for y is $0 \le y \le \frac{81}{4}$ Hence the range of f(x) is $0 \le y \le \frac{81}{4}$

Hence the range of f(x) is $0 \le y \le \frac{81}{4}$



4 a i $x = 2t^2 - 3$ $x + 3 = 2t^2$ $\frac{x+3}{2} = t^2$ = t

$$\pm \sqrt{\frac{x+3}{2}} =$$

Take the positive root since t > 0.

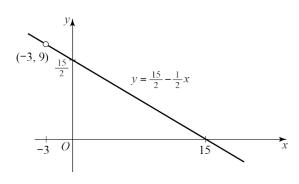
Substitute
$$t = \sqrt{\frac{x+3}{2}}$$
 into $y = 9 - t^2$:
 $y = 9 - \left(\sqrt{\frac{x+3}{2}}\right)^2 = 9 - \frac{x+3}{2}$
 $= \frac{18 - x - 3}{2} = \frac{15 - x}{2}$
The Q static sector is $15 - 1$

The Cartesian equation is $y = \frac{1}{2} - \frac{1}{2}x$

ii $x = 2t^2 - 3, t > 0$

 $2t^2 - 3$ is a quadratic function with minimum value -3 at t = 0. The range of the parametric function for x is x > -3. Hence the domain of f(x) is x > -3.

 $v = 9 - t^2, t > 0$ $y = 9 - t^2$ is a quadratic function with maximum value 9 at t = 0. So the range of the parametric function for *y* is y < 9. Hence the range of f(x) is y < 9.



b i x = 3t - 1x + 1 = 3t $\frac{x+1}{2} = t$

> Substitute $t = \frac{x+1}{2}$ into y = (t-1)(t+2):

$$y = \left(\frac{x+1}{3} - 1\right) \left(\frac{x+1}{3} + 2\right)$$
$$= \left(\frac{x+1-3}{3}\right) \left(\frac{x+1+6}{3}\right)$$
$$= \left(\frac{x-2}{3}\right) \left(\frac{x+7}{3}\right)$$

The Cartesian equation is $y = \frac{1}{9}(x-2)(x+7)$

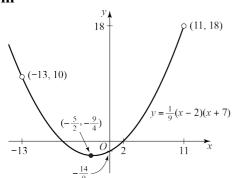
ii x = 3t - 1, -4 < t < 4When t = -4, x = -13; when t = 4, x = 11. The range of the parametric function for *x* is -13 < x < 11. So the domain of f(x) is -13 < x < 11.

y = (t-1)(t+2), -4 < t < 4When t = -4, y = 10; when t = 4, y = 18; and (t-1)(t+2) is a quadratic function with minimum value $-\frac{9}{4}$ at t = -0.5. The range of the parametric function

for *y* is $-\frac{9}{4} \le y < 18$.

Hence the range of f(x) is $-\frac{9}{4} \le y < 18$.

Note: Due to symmetry, the minimum value of *v* occurs midway between the roots t = 1 and t = -2, i.e. at t = -0.5.



c i x = t + 1x - 1 = t

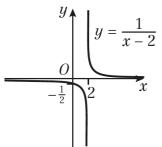
> Substitute t = x - 1 into $y = \frac{1}{t - 1}$: $y = \frac{1}{x - 1 - 1} = \frac{1}{x - 2}$ The Cartesian equation is $y = \frac{1}{x - 2}$

ii x = t + 1, $t \in \mathbb{R}$, $t \neq 1$ So the domain of f(x) is $x \in \mathbb{R}$, $x \neq 2$.

$$y = \frac{1}{t-1}, t \in \mathbb{R}, t \neq 1$$

So the range of f(x) is $y \in \mathbb{R}, y \neq 0$.

iii

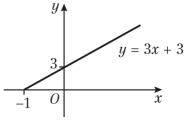


d i $x = \sqrt{t} - 1$ $x + 1 = \sqrt{t}$ $(x+1)^2 = t$ Substitute $t = (x+1)^2$ into $y = 3\sqrt{t}$: $y = 3\sqrt{(x+1)^2} = 3(x+1)$ The Cartesian equation is y = 3x + 3

ii $x = \sqrt{t} - 1, t > 0$ When t = 0, x = -1and as *t* increases $\sqrt{t} - 1$ increases. The range of the parametric function for *x* is x > -1. So the domain of f(x) is x > -1.

 $y = 3\sqrt{t}, t > 0$ The range of the parametric function for y is y > 0. So the range of f(x) is y > 0.

d iii



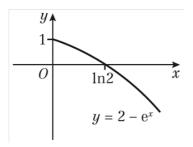
e i
$$x = \ln (4-t)$$

 $e^x = 4-t$
 $t = 4-e^x$
Substitute $t = 4-e^x$ into $y = t-2$:
 $y = 4-e^x-2=2-e^x$
The Cartesian equation is $y = 2-e^x$

ii $x = \ln (4-t), t < 3$ When $t = 3, x = \ln 1 = 0$ and as t decreases $\ln (4-t)$ increases. So the domain of f(x) is x > 0.

y = t - 2, t < 3When t = 3, y = 1and as t decreases t - 2 decreases. So the range of f(x) is y < 1.

4 e iii



5 a
$$C_1: x = 1 + 2t$$

$$\Rightarrow \frac{x - 1}{2} = t$$

Substitute $t = \frac{x-1}{2}$ into y = 2+3t: $y = 2+3\left(\frac{x-1}{2}\right)$ $= \frac{4+3x-3}{2} = \frac{3x+1}{2}$ So the Cartesian equation of C_1 is

$$y = \frac{3}{2}x + \frac{1}{2}$$

$$C_{2}: x = \frac{1}{2t-3}$$

$$2t-3 = \frac{1}{x}$$

$$2t = 3 + \frac{1}{x} = \frac{3x+1}{x}$$

$$\therefore t = \frac{3x+1}{2x}$$
and $y = \frac{t}{2t-3} = t\left(\frac{1}{2t-3}\right)$

Substitute $t = \frac{3x+1}{2x}$ and $x = \frac{1}{2t-3}$ into $y = t\left(\frac{1}{2t-3}\right)$: $y = \left(\frac{3x+1}{2x}\right)x = \frac{3x+1}{2}$

So the Cartesian equation of C_2 is

$$y = \frac{3}{2}x + \frac{1}{2}$$

Therefore C₁ and C₂ are segments of the same line $y = \frac{3}{2}x + \frac{1}{2}$

SolutionBank

5 b For the length of each segment find the domain and range of C_1 and C_2 . For C_1 : x = 1+2t, 2 < t < 5When t = 2, x = 5; when t = 5, x = 11. The range of the parametric function for x is 5 < x < 11, so the domain of C_1 is 5 < x < 11.

> y = 2+3t, 2 < t < 5When t = 2, y = 8; when t = 5, y = 17. The range of the parametric function for y is 8 < y < 17, so the range of C_1 is 8 < y < 17.

The endpoints of C_1 have coordinates (5, 8) and (11, 17). :. length of $C_1 = \sqrt{(11-5)^2 + (17-8)^2}$ $= \sqrt{36+81}$ $= \sqrt{117} = 3\sqrt{13}$

For C₂:
$$x = \frac{1}{2t-3}$$
, $2 < t < 3$
When $t = 2$, $x = 1$;
when $t = 3$, $x = \frac{1}{3}$.
The range of the parametric function
for x is $\frac{1}{3} < x < 1$,
so the domain of C₂ is $\frac{1}{3} < x < 1$.
 $y = \frac{t}{2t-3}$, $2 < t < 3$
When $t = 2$, $y = 2$;
when $t = 3$, $y = 1$.

when t = 3, y = 1. The range of the parametric function for y is 1 < y < 2, so the range of C_2 is 1 < y < 2. The endpoints of C_2 have coordinates ` $\left(\frac{1}{3}, 1\right)$ and (1, 2).

: length of
$$C_2 = \sqrt{\left(1 - \frac{1}{3}\right)^2 + \left(2 - 1\right)^2}$$

= $\sqrt{\frac{4}{9} + 1} = \sqrt{\frac{4 + 9}{9}} = \frac{\sqrt{13}}{3}$

6 a
$$x = \frac{3}{t} + 2, t \neq 0$$

The range of the parametric function for x is $x \neq 2$. (This is also the domain of the Cartesian equation y = f(x).)

$$y = 2t - 3 - t^2$$
, $t \neq 0$
When $t = 0$, $y = -3$;
 $2t - 3 - t^2$ is a quadratic function
with maximum value -2 at $t = 1$.
The range of the parametric function
for y is $y \le -2$, $y \ne -3$.
(This is also the range of the Cartesian
equation $y = f(x)$.)

Note: To find the maximum point of the quadratic $y = 2t - 3 - t^2$,

either solve
$$\frac{dy}{dt} = 0$$

 $2 - 2t = 0$
 $2 = 2t$
 $t = 1$
 $\therefore y = 2(1) - 3 - (1)^2 = -2$
or complete the square
 $y = -((t-1)^2 - 1 + 3)$
 $= -((t-1)^2 + 2)$
 $= -(t-1)^2 - 2$

SolutionBank

6 b
$$x = \frac{3}{t} + 2$$

 $x - 2 = \frac{3}{t}$
 $t = \frac{3}{x - 2}$

Substitute $t = \frac{3}{x-2}$ into $y = 2t-3-t^2$:

$$y = 2\left(\frac{3}{x-2}\right) - 3 - \left(\frac{3}{x-2}\right)^2$$

= $\frac{6(x-2) - 3(x-2)^2 - 3^2}{(x-2)^2}$
= $-3\left(\frac{-2(x-2) + (x-2)^2 + 3}{(x-2)^2}\right)$
= $-3\left(\frac{-2x + 4 + x^2 - 4x + 4 + 3}{(x-2)^2}\right)$
= $\frac{-3(x^2 - 6x + 11)}{(x-2)^2}$

This is a Cartesian equation in the form

$$y = \frac{A(x^2 + bx + c)}{(x-2)^2}$$
 with
 $A = -3, b = -6$ and $c = 11$.

7

a
$$x = \ln (t+3), t > -2$$

 $e^{x} = t+3$
 $e^{x} - 3 = t$
Substitute $t = e^{x} - 3$ into $y = \frac{1}{t+5}$:
 $y = \frac{1}{e^{x} - 3 + 5} = \frac{1}{e^{x} + 2}$

When t = -2, $x = \ln 1 = 0$ and as *t* increases $\ln (t + 3)$ increases. The range of the parametric function for *x* is x > 0, so the domain of f(x) is x > 0. Therefore the Cartesian equation is $y = \frac{1}{e^x + 2}$, x > k where k = 0.

b $y = \frac{1}{t+5}, t > -2$ When t = -2, $y = \frac{1}{2}$ and as t increases, $\frac{1}{t+5}$ decreases towards zero. The range of the parametric function for y is $0 < y < \frac{1}{2}$ so the range of f(x) is $0 < y < \frac{1}{2}$ **8 a** $x = 3\sqrt{t}$ $\frac{x}{3} = \sqrt{t}$ $\frac{x^2}{0} = t$ Substitute $t = \frac{x^2}{9}$ into $y = t^3 - 2t$: $y = \left(\frac{x^2}{9}\right)^3 - 2\left(\frac{x^2}{9}\right) = \frac{x^6}{729} - \frac{2x^2}{9}$ The Cartesian equation is $y = \frac{x^6}{729} - \frac{2x^2}{9}$ $x = 3\sqrt{t}, 0 \le t \le 2$ When t = 0, x = 0; when t = 2, $x = 3\sqrt{2}$. The range of the parametric function for x is $0 \le x \le 3\sqrt{2}$ so the domain of f(x) is $0 \le x \le 3\sqrt{2}$. 4.,

b
$$\frac{dy}{dt} = 3t^2 - 2$$
$$\frac{dy}{dt} = 0 \text{ when } 3t^2 - 2 = 0$$
$$3t^2 = 2$$
$$t^2 = \frac{2}{3}$$
$$t = \sqrt{\frac{2}{3}} \text{ (as } 0 \le t \le 2)$$

8 c
$$\frac{d^2 y}{dt^2} = 6t$$

When $t = \sqrt{\frac{2}{3}}, \frac{d^2 y}{dt^2} = 6\left(\sqrt{\frac{2}{3}}\right) > 0$
So $t = \sqrt{\frac{2}{3}}$ gives a minimum point
of the parametric function for y.
The minimum value of y is
 $\left(\sqrt{\frac{2}{3}}\right)^3 - 2\left(\sqrt{\frac{2}{3}}\right)$
 $= \frac{2}{3}\sqrt{\frac{2}{3}} - \frac{6}{3}\sqrt{\frac{2}{3}} = -\frac{4}{3}\frac{\sqrt{2}}{\sqrt{3}} = -\frac{4\sqrt{6}}{9}$
When $t = 0, y = 0$;
when $t = 2, y = 4$.
The range of the parametric function
for y is $-\frac{4\sqrt{6}}{9} \le y \le 4$.
Therefore the range of f(x) is

$$-\frac{4\sqrt{6}}{9} \le \mathbf{f}(x) \le 4.$$

9 **a**
$$x = t^3 - t = t(t^2 - 1)$$

 $\Rightarrow x^2 = t^2(t^2 - 1)^2$ (1)

$$y = 4 - t^2 \Longrightarrow t^2 = 4 - y \quad (2)$$

Substitute (2) into (1): $x^{2} = (4-y)(4-y-1)^{2}$ $x^{2} = (4-y)(3-y)^{2}$ This is in the form $x^{2} = (a-y)(b-y)^{2}$ with a = 4 and b = 3.

b $y = 4 - t^2, t \in \mathbb{R}$

This is a quadratic function of *t*, and (by symmetry) the maximum value of *y* occurs at t = 0, where y = 4. So 4 is the maximum *y*-coordinate.

Challenge

$$x^{2} = \left(\frac{1-t^{2}}{1+t^{2}}\right)^{2}$$
(1)
$$y^{2} = \left(\frac{2t}{1+t^{2}}\right)^{2}$$
(2)

Add (1) and (2):

$$x^{2} + y^{2} = \left(\frac{1-t^{2}}{1+t^{2}}\right)^{2} + \left(\frac{2t}{1+t^{2}}\right)^{2}$$
$$= \frac{(1-t^{2})^{2} + 4t^{2}}{(1+t^{2})^{2}}$$
$$= \frac{1-2t^{2} + t^{4} + 4t^{2}}{(1+t^{2})^{2}}$$
$$= \frac{1+2t^{2} + t^{4}}{(1+t^{2})^{2}}$$
$$= \frac{(1+t^{2})^{2}}{(1+t^{2})^{2}} = 1$$

So a Cartesian equation for curve *C* is $x^2 + y^2 = 1$.

b $x^{2} + y^{2} = 1$ $\Rightarrow (x - 0)^{2} + (y - 0)^{2} = 1$

Curve C is the equation of a circle with centre (0, 0) and radius 1.