Algebraic Methods 1E

$1 \frac{3 x^{2}+x+1}{x^{2}(x+1)} \equiv \frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+1}$

$$
\begin{aligned}
& \equiv \frac{A x(x+1)+B(x+1)+C x^{2}}{x^{2}(x+1)} \\
& 3 x^{2}+x+1 \equiv A x(x+1)+B(x+1)+C x^{2}
\end{aligned}
$$

Let $x=0$:

$$
\begin{aligned}
0+0+1 & =0+B \times 1+0 \\
B & =1
\end{aligned}
$$

Let $x=-1$:

$$
\begin{aligned}
3-1+1 & =0+0+C \times(-1)^{2} \\
C & =3
\end{aligned}
$$

Equating terms in x^{2} :

$$
\begin{aligned}
& 3=A+C \\
& 3=A+3 \\
& A=0
\end{aligned}
$$

$$
A=0, B=1, C=3
$$

$2 \frac{-x^{2}-10 x-5}{(x+1)^{2}(x-1)} \equiv \frac{D}{x+1}+\frac{E}{(x+1)^{2}}+\frac{F}{x-1}$

$$
\begin{aligned}
& \equiv \frac{D(x+1)(x-1)+E(x-1)+F(x+1)^{2}}{(x+1)^{2}(x-1)} \\
-x^{2}-10 x-5 & \equiv D(x+1)(x-1)+E(x-1)+F(x+1)^{2}
\end{aligned}
$$

Let $x=-1$:

$$
\begin{aligned}
-1+10-5 & =0+E \times(-2)+0 \\
4 & =-2 E \\
E & =-2
\end{aligned}
$$

Let $x=1$:

$$
\begin{aligned}
-1-10-5 & =0+0+F \times 2^{2} \\
-16 & =4 F \\
F & =-4
\end{aligned}
$$

Equating terms in x^{2} :

$$
\begin{aligned}
-1 & =D+F \\
-1 & =D-4 \\
D & =3
\end{aligned}
$$

$D=3, E=-2, F=-4$
$3 \frac{2 x^{2}+2 x-18}{x(x-3)^{2}} \equiv \frac{P}{x}+\frac{Q}{x-3}+\frac{R}{(x-3)^{2}}$

$$
\equiv \frac{P(x-3)^{2}+Q x(x-3)+R x}{x(x-3)^{2}}
$$

$$
2 x^{2}+2 x-18 \equiv P(x-3)^{2}+Q x(x-3)+R x
$$

Let $x=0$:

$$
\begin{aligned}
-18 & =P \times(-3)^{2}+0+0 \\
-18 & =9 P \\
P & =-2
\end{aligned}
$$

Let $x=3$:

$$
\begin{aligned}
18+6-18 & =0+0+R \times 3 \\
6 & =3 R \\
R & =2
\end{aligned}
$$

Equating terms in x^{2} :

$$
\begin{aligned}
& 2=P+Q \\
& 2=-2+Q \\
& Q=4
\end{aligned}
$$

$$
P=-2, Q=4, R=2
$$

4 First factorise the denominator:

$$
\frac{5 x^{2}-2 x-1}{x^{3}-x^{2}} \equiv \frac{5 x^{2}-2 x-1}{x^{2}(x-1)}
$$

Then $\frac{5 x^{2}-2 x-1}{x^{2}(x-1)} \equiv \frac{C}{x}+\frac{D}{x^{2}}+\frac{E}{x-1}$

$$
\begin{aligned}
& \equiv \frac{C x(x-1)+D(x-1)+E x^{2}}{x^{2}(x-1)} \\
5 x^{2}-2 x-1 & \equiv C x(x-1)+D(x-1)+E x^{2}
\end{aligned}
$$

Let $x=0$:

$$
\begin{aligned}
-1 & =0+D \times(-1)+0 \\
-1 & =-D \\
D & =1
\end{aligned}
$$

Let $x=1$:

$$
\begin{aligned}
& 5-2-1=0+0+E \times 1^{2} \\
& E=2
\end{aligned}
$$

Equating terms in x^{2} :

$$
\begin{aligned}
& 5=C+E \\
& 5=C+2 \\
& C=3
\end{aligned}
$$

$C=3, D=1, E=2$
$5 \frac{2 x}{(x+2)^{2}} \equiv \frac{A}{x+2}+\frac{B}{(x+2)^{2}}$

$$
\begin{aligned}
& \equiv \frac{A(x+2)+B}{(x+2)^{2}} \\
2 x & \equiv A(x+2)+B
\end{aligned}
$$

Let $x=-2$:

$$
\begin{aligned}
-4 & =0+B \\
B & =-4
\end{aligned}
$$

Let $x=0$:

$$
\begin{aligned}
& 0=2 A+B \\
& 0=2 A-4 \\
& A=2
\end{aligned}
$$

$$
A=2, B=-4
$$

$6 \frac{10 x^{2}-10 x+17}{(2 x+1)(x-3)^{2}} \equiv \frac{A}{2 x+1}+\frac{B}{x-3}+\frac{C}{(x-3)^{2}}$

$$
\equiv \frac{A(x-3)^{2}+B(2 x+1)(x-3)+C(2 x+1)}{(2 x+1)(x-3)^{2}}
$$

$$
10 x^{2}-10 x+17 \equiv A(x-3)^{2}+B(2 x+1)(x-3)+C(2 x+1)
$$

Let $x=-\frac{1}{2}$:

$$
\begin{aligned}
\frac{10}{4}+5+17 & =A \times\left(-\frac{7}{2}\right)^{2}+0+0 \\
\frac{98}{4} & =\frac{49}{4} A \\
A & =2
\end{aligned}
$$

Let $x=3$:

$$
\begin{aligned}
90-30+17 & =0+0+C \times 7 \\
77 & =7 C \\
C & =11
\end{aligned}
$$

Equating terms in x^{2} :

$$
\begin{aligned}
10 & =A+2 B \\
10 & =2+2 B \\
B & =4
\end{aligned}
$$

$$
A=2, B=4, C=11
$$

$7 \frac{39 x^{2}+2 x+59}{(x+5)(3 x-1)^{2}} \equiv \frac{A}{x+5}+\frac{B}{3 x-1}+\frac{C}{(3 x-1)^{2}}$

$$
\equiv \frac{A(3 x-1)^{2}+B(x+5)(3 x-1)+C(x+5)}{(x+5)(3 x-1)^{2}}
$$

$$
39 x^{2}+2 x+59 \equiv A(3 x-1)^{2}+B(x+5)(3 x-1)+C(x+5)
$$

Let $x=\frac{1}{3}$:

$$
\begin{aligned}
\frac{39}{9}+\frac{2}{3}+59 & =0+0+C \times \frac{16}{3} \\
64 & =\frac{16}{3} C \\
C & =12
\end{aligned}
$$

Let $x=-5$:

$$
\begin{aligned}
975-10+59 & =A \times(-16)^{2}+0+0 \\
1024 & =256 A \\
A & =4
\end{aligned}
$$

Equating terms in x^{2} :

$$
\begin{aligned}
39 & =9 A+3 B \\
39 & =36+3 B \\
B & =1
\end{aligned}
$$

$$
A=4, B=1, C=12
$$

8 a $\frac{4 x+1}{(x+5)^{2}} \equiv \frac{A}{x+5}+\frac{B}{(x+5)^{2}}$

$$
\begin{aligned}
& \equiv \frac{A(x+5)+B}{(x+5)^{2}} \\
4 x+1 & \equiv A(x+5)+B
\end{aligned}
$$

Let $x=-5$:

$$
\begin{aligned}
-20+1 & =0+B \\
B & =-19
\end{aligned}
$$

Let $x=0$:

$$
\begin{aligned}
& 1=5 A+B \\
& 1=5 A-19 \\
& A=4
\end{aligned}
$$

$$
\frac{4 x+1}{(x+5)^{2}} \equiv \frac{4}{x+5}-\frac{19}{(x+5)^{2}}
$$

8 b $\frac{6 x^{2}-x+2}{x(2 x-1)^{2}} \equiv \frac{A}{x}+\frac{B}{2 x-1}+\frac{C}{(2 x-1)^{2}}$

$$
\equiv \frac{A(2 x-1)^{2}+B x(2 x-1)+C x}{x(2 x-1)^{2}}
$$

$6 x^{2}-x+2 \equiv A(2 x-1)^{2}+B x(2 x-1)+C x$
Let $x=0$:

$$
\begin{aligned}
& 2=A \times(-1)^{2}+0+0 \\
& A=2
\end{aligned}
$$

Let $x=\frac{1}{2}$:

$$
\begin{aligned}
\frac{3}{2}-\frac{1}{2}+2 & =0+0+C \times \frac{1}{2} \\
C & =6
\end{aligned}
$$

Equating terms in x^{2} :
$6=4 A+2 B$
$6=8+2 B$
$B=-1$
So $\frac{6 x^{2}-x+2}{x(2 x-1)^{2}} \equiv \frac{2}{x}-\frac{1}{2 x-1}+\frac{6}{(2 x-1)^{2}}$

