Algebraic methods 1A

1 B At least one multiple of three is odd.
2 a At least one rich person is not happy.
b There is at least one prime number between 10 million and 11 million.
c If p and q are prime numbers there exists a number of the form $(p q+1)$ that is not prime.
d There is a number of the form $2^{n}-1$ that is either not prime or not a multiple of 3 .
e None of the above statements is true.
3 a There exists a number n such that n^{2} is odd but n is even.
b n is even so write $n=2 k$
$n^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right)$
So n^{2} is even.
This contradicts the assumption that n^{2} is odd.
Therefore, if n^{2} is odd then n must be odd.
4 a Assumption: there is a greatest even integer, $2 n$.
$2(n+1)$ is also an integer and
$2(n+1)>2 n$
$2 n+2=$ even + even $=$ even
So there exists an even integer greater that $2 n$.
This contradicts the assumption that the greatest even integer is $2 n$.
Therefore there is no greatest even integer.
b Assumption: there exists a number n such that n^{3} is even but n is odd.
n is odd so write $n=2 k+1$
$n^{3}=(2 k+1)^{3}$
$=8 k^{3}+12 k^{2}+6 k+1$
$=2\left(4 k^{3}+6 k^{2}+3 k\right)+1$
So n^{3} is odd.
This contradicts the assumption that n^{3} is even.
Therefore, if n^{3} is even then n must be even.
c Assumption: if $p q$ is even then neither p nor q is even.
p is odd, $p=2 k+1$
q is odd, $q=2 m+1$
$p q=(2 k+1)(2 m+1)$
$=2 k m+2 k+2 m+1$
$=2(k m+k+m)+1$
So $p q$ is odd.
This contradicts the assumption that $p q$ is even.
Therefore, if $p q$ is even then at least one of p and q is even.

4 d Assumption: if $p+q$ is odd than neither p nor q is odd.
p is even, $p=2 k$
q is even, $q=2 m$
$p+q=2 k+2 m=2(k+m)$
So $p+q$ is even.
This contradicts the assumption that $p+q$ is odd.
Therefore, if $p+q$ is odd then at least one of p and q is odd.
5 a Assumption: if $a b$ is an irrational number then neither a nor b is irrational.
a is rational, $a=\frac{c}{d}$ where c and d are integers.
b is rational, $b=\frac{e}{f}$ where e and f are integers.
$a b=\frac{c e}{d f}, c e$ is an integer, $d f$ is an integer.
Therefore $a b$ is a rational number.
This contradicts assumption that $a b$ is irrational.
Therefore, if $a b$ is an irrational number then at least one of a and b is an irrational number.
b Assumption: if $a+b$ is an irrational number then neither a nor b is irrational.
a is rational, $a=\frac{c}{d}$ where c and d are integers.
b is rational, $b=\frac{e}{f}$ where e and f are integers.
$a+b=\frac{c f+d e}{d f}, c f, d e$ and $d f$ are integers.
So $a+b$ is rational. This contradicts the assumption that $a+b$ is irrational.
Therefore if $a+b$ is irrational then at least one of a and b is irrational.
c Many possible answers
e.g. $a=2-\sqrt{2}, b=\sqrt{2}$.

6 Assumption: there exist integers a and b such that $21 a+14 b=1$.
Since 21 and 14 are multiples of 7 , divide both sides by 7 .
So now $3 a+2 b=\frac{1}{7}$
$3 a$ is also an integer. $2 b$ is also an integer.
The sum of two integers will always be an integer, so $3 a+2 b$ is an integer.
This contradicts the statement that
$3 a+2 b=\frac{1}{7}$
Therefore there exist no integers a and b for which $21 a+14 b=1$.

7 a Assumption: There exists a number n such that n^{2} is a multiple of 3 , but n is not a multiple of 3 .
All multiples of 3 can be written in the form $n=3 k$ where k is an integer, therefore $3 k+1$ and $3 k+2$ are not multiples of 3 .
Let $n=3 k+1$

$$
\begin{aligned}
n^{2} & =(3 k+1)^{2} \\
& =9 k^{2}+6 k+1
\end{aligned}
$$

$$
=3\left(3 k^{2}+2 k\right)+1
$$

In this case n^{2} is not a multiple of 3 .
Let $n=3 k+2$

$$
\begin{aligned}
n^{2} & =(3 k+2)^{2} \\
& =9 k^{2}+12 k+4 \\
& =3\left(3 k^{2}+4 k+1\right)+1
\end{aligned}
$$

In this case n^{2} is also not a multiple of 3 .
This contradicts the assumption that n^{2} is a multiple of 3 .
Therefore if n^{2} is a multiple of $3, n$ is a multiple of 3 .
b Assumption: $\sqrt{3}$ is a rational number.
Then $\sqrt{3}=\frac{a}{b}$ for some integers a and b.
Further assume that this fraction is in its simplest terms:
there are no common factors between a and b.
So $3=\frac{a^{2}}{b^{2}}$ or $a^{2}=3 b^{2}$
Therefore a^{2} must be a multiple of 3 .
We know from part a that this means a must also be a multiple of 3 .
Write $a=3 c$, which means $a^{2}=(3 c)^{2}=9 c^{2}$.
Now $9 c^{2}=3 b^{2}$, or $3 c^{2}=b^{2}$.
Therefore b^{2} must be a multiple of 3 , which means b is also a multiple of 3 .
If a and b are both multiples of 3, this contradicts the statement that there are no common factors between a and b.
Therefore, $\sqrt{3}$ is an irrational number.
8 Assumption: there is an integer solution to the equation $x^{2}-y^{2}=2$.
Remember that $x^{2}-y^{2}=(x-y)(x+y)=2$.
To make a product of 2 using integers, the possible pairs are: $(2,1),(1,2),(-2,-1)$ and ($-1,-2$).
Consider each possibility in turn:
$x-y=2$ and $x+y=1 \Rightarrow x=\frac{3}{2}, y=-\frac{1}{2}$
$x-y=1$ and $x+y=2 \Rightarrow x=\frac{3}{2}, y=\frac{1}{2}$
$x-y=-2$ and $x+y=-1 \Rightarrow x=-\frac{3}{2}, y=\frac{1}{2}$
$x-y=-1$ and $x+y=-2 \Rightarrow x=-\frac{3}{2}, y=-\frac{1}{2}$
This contradicts the statement that there is an integer solution to the equation $x^{2}-y^{2}=2$. Therefore the original statement must be true:

8 (continued)

There are no integer solutions to the equation $x^{2}-y^{2}=2$.
9 Assumption: $\sqrt[3]{2}$ is a rational number
Then $\sqrt[3]{2}=\frac{a}{b}$ for some integers a and b.
Further assume that this fraction is in its simplest terms:
there are no common factors between a and b.
This means that if a^{3} is even, a must also be even.
If a is even, $a=2 n$.
So $a^{3}=2 b^{3}$ becomes $(2 n)^{3}=2 b^{3}$ which means $8 n^{3}=2 b^{3}$ or $4 n^{3}=b^{3}$ or $2\left(2 n^{3}\right)=b^{3}$
This means that b^{3} must be even, so b is also even.
If a and b are both even, they will have a common factor of 2 .
This contradicts the statement that a and b have no common factors.
We can conclude the original statement is true: $\sqrt[3]{2}$ is an irrational number.
10 a The number $\frac{a-b}{b}$ could be negative.
e.g. If $n=\frac{1}{2}, n-1$ is non-positive.
b Assumption: There is a least positive rational number, n.
$n=\frac{a}{b}$ where a and b are integers.
Let $m=\frac{a}{2 b}$. Since a and b are integers, m is rational and $m<n$.
This contradicts the statement that n is the least positive rational number. Therefore, there is no least positive rational number.

