Representations of data 3D

1 a Class widths are all 5.
Frequency densities are: $0.8,2.4,4.6,1.6,0.6$

2 a Time is a continuous variable.
b Frequency $=$ frequency density \times class width

$$
=5 \times 20=100
$$

So there were 100 students who took between 40 and 60 seconds.
c 100 students took between 40 and 60 seconds (from part b)
$6 \times 10=60$ students took between 60 and 70 seconds.
$8.6 \times 10=86$ students took between 70 and 80 seconds.
So $100+60+86=246$ students took 80 seconds or less.
d 246 students took 80 seconds of less (from part c)
$14 \times 5=70$ students took between 80 and 85 seconds.
$12 \times 5=60$ students took between 85 and 90 seconds.
$3 \times 30=90$ students took between 90 and 120 seconds.
Total: $246+70+60+90=466$
There are 466 students in total.
3 a Distance is a continuous variable.
b Frequency $=$ frequency density \times class width
0 m to $20 \mathrm{~m}: 2 \times 20=40$
20 m to $35 \mathrm{~m}: 5 \times 15=75$
35 m to $45 \mathrm{~m}: 10 \times 10=100$
45 m to $60 \mathrm{~m}: 6 \times 15=90$
60 m to $65 \mathrm{~m}: 1 \times 5=5$
Total: $40+75+100+90+5=310$
So 310 people entered the competition.

3 c Frequency $=$ frequency density \times class width
30 m to 35 m : $5 \times 5=25$
35 m to $40 \mathrm{~m}: 10 \times 5=50$
Total: $25+50=75$
So 75 people threw between 30 and 40 metres.
d From part b:
45 m to 60 m : 90 people
60 m to 65 m : 5 people
Total: $90+5=95$
So 95 people threw between 45 and 60 metres.
e From part b, 40 people threw between 0 and 20 metres.
20 m to $25 \mathrm{~m}: 5 \times 5=25$
Total: $40+25=65$
So 65 people threw between 0 and 25 metres.
4 a The bar for $28 \leqslant m<32$ has an area of $10 \times 10=100$ squares. If 100 squares represents 32 lambs then $\frac{100}{4}$ squares represents $\frac{32}{4}$ lambs.
i.e. 25 squares represents 8 lambs.
b The class $24 \leqslant m<26$ contains $5 \times 20=100$ squares.
As above, this represents 32 lambs.
c The class $20 \leqslant m<24$ contains $10 \times 10=100$ squares which represents 32 lambs.
The class $24 \leqslant m<26$ contains $5 \times 20=100$ squares which represents 32 lambs.
The class $26 \leqslant m<28$ contains $5 \times 40=200$ squares which represents 64 lambs.
The class $28 \leqslant m<32$ contains $10 \times 10=100$ squares which represents 32 lambs.
The class $32 \leqslant m<34$ contains $5 \times 5=25$ squares which represents 8 lambs.
So in total we have $32+32+64+32+8=168$ lambs.
d Class $25 \leqslant m<26$ is approximately $\frac{1}{2}$ of class $24 \leqslant m<26$ which equates to 16 lambs. Class $26 \leqslant m<28$ represents 64 lambs.
Class $28 \leqslant m<29$ is approximately $\frac{1}{4}$ of class $28 \leqslant m<32$ which equates to 8 lambs.
So in total we have $16+64+8=88$ lambs.

5 a i Use extra columns to help, using the frequency densities given in the histogram:

Time, \boldsymbol{t} (min)	Frequency	Class width	Frequency density
$0 \leqslant t<20$	4	20	0.2
$20 \leqslant t<30$	$10 \times 1=10$	10	1
$30 \leqslant t<35$	15	5	3
$35 \leqslant t<40$	25	5	5
$40 \leqslant t<50$	$10 \times 0.7=7$	10	0.7
$50 \leqslant t<70$	$20 \times 0.3=6$	20	0.3

5 a ii

b $\left(\frac{5}{10} \times 10\right)+15+\left(\frac{3}{5} \times 25\right)=35$ passengers.
6 a 12.5 and 14.5 are the class boundaries, as we are dealing with continuous data.
b i The class boundaries for the $15-17$ class are 14.5 and 17.5.
This width is 1.5 times the width of the $13-14$ class, since $17.5-14.5=3=1.5 \times 2$.
So the width of the class is $1.5 \times 4=6 \mathrm{~cm}$.
ii The frequency density for the $13-14$ class is $\frac{24}{2}=12$.
The frequency density of this class is 6 , which is 0.5 times the frequency density above: 12 . So the height of the class is $0.5 \times 6=3 \mathrm{~cm}$.

7 a Width is half of the $8 \leqslant t<10$ class, which is 0.5 cm .
Height is double the frequency density, so must be $\frac{7}{1} \times 2=14 \mathrm{~cm}$.
b Mean $=\frac{\sum f x}{\sum f}=\frac{645}{62}=10.4^{\circ} \mathrm{C}$ (to 3 s.f.) where x is taken as the midpoint of each class.
Standard deviation $=\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}=\sqrt{113.89-\left(\frac{645}{62}\right)^{2}}=2.4$ (to 2 s.f.)
c Q_{1} is the $\frac{31}{4}=7.75^{\text {th }}$ piece of data.
$\frac{\mathrm{Q}_{1}-8}{10-8}=\frac{7.75-4}{12-4}$ using linear interpolation on the $8 \leq t<10$ class.
$\mathrm{Q}_{1}=8.94^{\circ} \mathrm{C}$
d Mean + standard deviation $=12.8^{\circ} \mathrm{C}$

$$
\frac{12.8-12}{15-12}=\frac{d-25}{30-25}
$$

$d=26.33$ days
So 4.7 days

