Measures of location and spread, Mixed Exercise 2

$1(8 \times 65)+(12 \times 72)=1384$
$\frac{1384}{20}=69.2 \mathrm{marks}$
2 a $10,12,9,2,2.5,9.5$
b coded mean $=\frac{45}{6}=7.5$
c mean $=7.5 \times 80+7=607$
$318 \times 1000+720=£ 18720$
4 a Group A :
$(1 \times 24.5)+(3 \times 34.5)+(6 \times 44.5)+(6 \times 54.5)+(11 \times 64.5)+(10 \times 74.5)+(8 \times 84.5)$
Mean $=\frac{2852.5}{45}=63.39$ marks
Group B:
$(1 \times 24.5)+(2 \times 34.5)+(4 \times 44.5)+(13 \times 54.5)+(15 \times 64.5)+(6 \times 74.5)+(3 \times 84.5)$
Mean $=\frac{2648}{44}=60.18$ marks
b The method used to teach group A is best as the mean mark is higher.
5 a Modal Class is $21-25$ hours
b We need the 40th value. This is in the $21-25$ class.
$\frac{m-20.5}{25.5-20.5}=\frac{40-30}{75-30}$
$45 m=50+922.5=972.5$
median $=21.6$ hours
c mean $=20.6$ hours
d $12 \times 22.3=267.6$ hours
Total hours for all 92 batteries is $267.6+1645=1912.6$
Mean life for 92 batteries is 20.8 hours.

6 Data is continuous, so:
$\mathrm{Q}_{1}: \frac{50}{4}=12.5$ th value, so Q_{1} is in class 21-40
$\frac{\mathrm{Q}_{1}-20.5}{40.5-20.5}=\frac{12.5-5}{15-5}$
$\frac{\mathrm{Q}_{1}-20.5}{20}=\frac{7.5}{10}$
$\mathrm{Q}_{1}=35.5$
$Q_{3}: \frac{3 \times 50}{4}=37.5$ th value, so Q_{3} is in class $61-80$
$\frac{\mathrm{Q}_{3}-60.5}{80.5-60.5}=\frac{37.5-30}{42-30}$
$\mathrm{Q}_{3}=73$
$\mathrm{IQR}=73-35.5=37.5$
7 a 30 th : $\frac{30}{100} \times 100=30$
$\mathrm{P}_{30}=20.5$
b 70 th : $\frac{70}{100} \times 100=70$
$\frac{\mathrm{P}_{70}-30.5}{40.5-30.5}=\frac{70-60}{84-60}$
$\mathrm{P}_{66}=34.7$
c 30% to 70% interpercentile $=34.7-20.5=14.2$
8 a $Q_{1}: \frac{80}{4}=20$ th value, so Q_{1} is in class $40-49$
$\frac{\mathrm{Q}_{1}-39.5}{49.5-39.5}=\frac{20-15}{51-15}$
$\frac{\mathrm{Q}_{1}-39.5}{10}=\frac{5}{36}$
$\mathrm{Q}_{1}=40.9$

8 a $Q_{3}: \frac{3 \times 80}{4}=60$ th value, so Q_{3} is in class $50-59$
$\frac{\mathrm{Q}_{3}-49.5}{59.5-49.5}=\frac{60-51}{71-51}$
$\mathrm{Q}_{3}=54$
$\mathrm{IQR}=54-40.9=13.1$
b \quad Variance $=\frac{183040}{80}-\left(\frac{3740}{80}\right)^{2}=102.4375=102$
Standard deviation $=\sqrt{102.4375}=10.1$
$9 \quad \mathrm{CF}=515414950$
a Data is continuous, so:
$\mathrm{Q}_{1}: \frac{50}{4}=12.5$ th value, so Q_{1} is in class $95-100$
$\frac{\mathrm{Q}_{1}-95}{100-95}=\frac{12.5-5}{15-5}$
$\mathrm{Q}_{1}=98.75$
b $\mathrm{Q}_{3}: 3 \times \frac{50}{4}=37.5$ th value, so Q_{3} is in class $100-105$
$\frac{\mathrm{Q}_{3}-100}{105-100}=\frac{37.5-15}{41-15}$
$\mathrm{Q}_{3}=104.33$
c $\mathrm{IQR}=104.33-98.75=5.58$
d Standard deviation $=\sqrt{\frac{516112.5}{50}-\left(\frac{5075}{50}\right)^{2}}=4.47$
10 a Mean $=\frac{(12 \times 12)+(14 \times 14)+(16 \times 4)}{30}=\frac{202}{15}=13.5(1 \mathrm{~d} . \mathrm{p})$
Standard deviation $=\sqrt{\frac{916}{5}-\left(\frac{202}{15}\right)^{2}}=1.36$ (3 s.f.)

10 b 10th : $\frac{10}{100} \times 30=3$

$$
\begin{aligned}
\frac{\mathrm{P}_{10}-11}{13-11} & =\frac{3-0}{12-0} \\
\mathrm{P}_{10} & =11.5
\end{aligned}
$$

90th: $\frac{90}{100} \times 30=27$

$$
\begin{aligned}
\frac{\mathrm{P}_{90}-15}{17-15} & =\frac{27-26}{30-26} \\
\mathrm{P}_{90} & =15.5
\end{aligned}
$$

10% to 90% interpercentile range $=15.5-11.5=4^{\circ} \mathrm{C}$
c $13.5+1.36=14.86$
Using interpolation:
$\frac{14.86-13}{15-13}=\frac{d-12}{26-12}$
$d=25.02$
$30-d=4.98$
So 5 days
11 a Coded mean $=\frac{106}{31}=3.419 \ldots$
Coded standard deviation $=\sqrt{\frac{80.55}{31}}=1.6119 \ldots$
b Mean $=3.419 \ldots \times 2+3=9.84 \mathrm{kn}$
Standard deviation $=1.6119 \times 2=3.22 \mathrm{kn}$
12 a Mean $=\frac{316}{20}=15.8$
Standard deviation $=\sqrt{\frac{5078}{20}-\left(\frac{316}{20}\right)^{2}}=2.06$
b It will decrease the mean wing span since $13<15.8$
c Coded mean $=\frac{104}{20}=5.2$
Mean $=5.2 \times 10+5=57 \mathrm{~cm}$
Coded standard deviation $=\sqrt{\frac{1.8}{20}}=0.3$
Standard deviation $=0.3 \times 10=3$

Challenge

Total $=3.1 \times 20=62$
New total $=62-2.3+3.2=62.9$
New mean $=\frac{62.9}{20}=3.145$
$\sigma=1.4, \sigma^{2}=1.96$
$1.96=\frac{\sum x^{2}}{20}-\left(\frac{62}{20}\right)^{2}$
$\sum x^{2}=231.4$
New $\sum x^{2}=231.4-2.3^{2}+3.2^{2}=236.35$
New standard deviation $=\sqrt{\frac{236.35}{20}-\left(\frac{62.9}{20}\right)^{2}}=1.39$

