Exponentials and logarithms 14H

- 1 **a** When $S = 4 \times 7^x$ $\log S = \log (4 \times 7^x)$ $\log S = \log 4 + \log 7^x$ $\log S = \log 4 + x \log 7$
 - **b** $\log S = x \log 7 + \log 4$ Gradient = $\log 7$ Intercept = $\log 4$
- 2 **a** When $A = 6x^4$ $\log A = \log (6x^4)$ $\log A = \log 6 + \log x^4$ $\log A = \log 6 + 4 \log x$
 - **b** $\log A = 4 \log x + \log 6$ Gradient = 4 Intercept = $\log 6$
- 3 a $\log x$ 0.48 0.70 0.90 1 1.18 $\log y$ 1.21 1.52 1.81 1.94 2.19

c $y = ax^n$ $\log y = \log (ax^n)$ $\log y = \log a + \log x^n$ $\log y = \log a + n \log x$ $\log y = n \log x + \log a$ Gradient = nIntercept = $\log a$ Calculating the gradient from the table, $n = \frac{2.19 - 1.21}{1.18 - 0.48} = \frac{0.98}{0.7} = 1.4$ Reading the intercept from the graph, $\log a = 0.55$ $a = 10^{0.55} = 3.548...$

a = 3.5, n = 1.4

4 8	a					
	x	2	3	5	6.5	9
	$\log y$	2.10	2.63	3.61	4.49	5.82

- *
$y = ab^x$
$\log y = \log \left(ab^{x} \right)$
$\log y = \log a + \log b^x$
$\log y = \log a + x \log b$
$\log y = x \log b + \log a$
Gradient = $\log b$
$Intercept = \log a$

Calculating the gradient from the table and the graph,

$$\log b = \frac{5.82 - 1}{9 - 0} = \frac{4.82}{9} = 0.53555...$$
$$b = 10^{0.53555...} = 3.43...$$

Reading the intercept from the graph, $\log a = 1$ $a = 10^1 = 10$ a = 10, b = 3.4

- **5 c** $R = am^b$
 - $\log R = \log (am^b)$
 - $\log R = \log a + \log m^b$
 - $\log R = \log a + b \log m$
 - Gradient = b
 - Intercept = $\log a$

Calculating the gradient from the table,

$$b = \frac{3.88 - 0.62}{2.81 - (-1.52)} = \frac{3.26}{4.33} = 0.75288...$$

Reading the intercept from the graph,

- $\log a = 1.78$
- $a = 10^{1.78} = 60.255...$
- a = 60, b = 0.75
- **d** $R = 60m^{0.75}$
 - When m = 80
 - $R = 60(80)^{0.75} = 1604.97...$
 - 1600 kcal/day (2 s.f.)
- 6 a

$\log R$	0	1	2	3
$\log f$	3.69	2.94	1.96	0.95

b

- $\mathbf{c} \quad f = AR^b$
 - $\log f = \log (AR^b)$
 - $\log f = \log A + \log R^b$
 - $\log f = \log A + b \log R$
 - $\log y = b \log R + \log A$
 - Gradient = b
 - Intercept = $\log A$

Calculating the gradient from the table,

$$b = \frac{0.95 - 3.69}{3 - 0} = \frac{-2.74}{3} = -0.91...$$

Reading the intercept from the graph,

- $\log A = 3.76$
 - $A = 10^{3.76} = 5754.39...$
- A = 5800, b = -0.9

- **6 d** $f = 5800R^{-0.9}$ per 100 000 words
 - When R = 57
 - f = 152.45...

For 455 125 words, $4.55125 \times f = 693.85...$

690 times (2 s.f.)

- **7 a** $N = ab^{t}$
 - $\log N = \log (ab^t)$
 - $\log N = \log a + \log b^t$
 - $\log N = \log a + t \log b$

Gradient =
$$\frac{2.55 - 1.6}{10 - 0} = \frac{0.95}{10} = 0.095$$

- Intercept = 1.6
- $\log N = 0.095t + 1.6$
- **b** $\log a = 1.6$
 - $a = 10^{1.6} = 39.8...$
 - $\log b = 0.095$
 - $b = 10^{0.095} = 1.2445...$
 - a = 40, b = 1.2

 \mathbf{c} a is the initial number of sick people

- **d** $N = ab^t$
 - $N = 40(1.2)^{30} = 9495.052 = 9500 \text{ (2 s.f.)}$

After 30 days people may start to recover, or the disease may stop spreading as quickly.

- **8 a** $A = pw^q$
 - $\log A = m \log w + c$
 - Intercept = -0.1049
 - Gradient = 2
 - $\log A = 2 \log w 0.1049$
 - **b** $A = pw^q$
 - $\log A = \log (pw^q)$
 - $\log A = \log p + \log w^q$
 - $\log A = \log p + q \log w$

Equating coefficients

- q=2
- $\log p = -0.1049$
 - $p = 10^{-0.1049}$
 - p = 0.785416... = 0.7854 (4 s.f.)
- **c** The shapes are circles.
 - Multiply p by 4
 - $4p = 3.1416... \approx \pi$

So p is approximately $\frac{1}{4}$ of π

So $A = \frac{\pi}{4} w^2$

8 c The width is the diameter of the circle

so
$$A = \frac{\pi}{4} (2r)^2 = \pi r^2$$

Challenge

$\log x$	0	0.30	0.48	0.60
$\log y$	0.72	0.67	0.63	0.58

The relationship between $\log x$ and $\log y$ is not linear so the relationship is perhaps $y = ax^n$

x	1	2	3	4
$\log y$	0.72	0.67	0.63	0.58

The second graph, $\log y$ against x, is a linear relationship so the relationship is of the form $y = ab^x$.

$$\log y = \log (ab^{x})$$

$$\log y = \log a + \log b^{x}$$

$$\log y = \log a + x \log b$$

Intercept = 0.75

$$\log a = 0.75$$

$$a = 10^{0.75} = 5.8$$

Gradient =
$$\frac{0.58 - 0.72}{4 - 1} = -\frac{0.14}{3} = -0.04666...$$

Challenge

$$\log b = -0.04666...$$
$$b = 10^{-0.04666...}$$
$$= 0.90$$

So the formula is $y = 5.8 \times 0.9^x$