Vectors, 11 Mixed Exercise

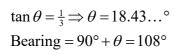
1 a
$$\mathbf{R} = -3\mathbf{i} + 7\mathbf{j} + \mathbf{i} - \mathbf{j}$$

= $-2\mathbf{i} + 6\mathbf{j}$
 $|\mathbf{R}| = \sqrt{2^2 + 6^2}$
= $\sqrt{40}$
= $2\sqrt{10}$

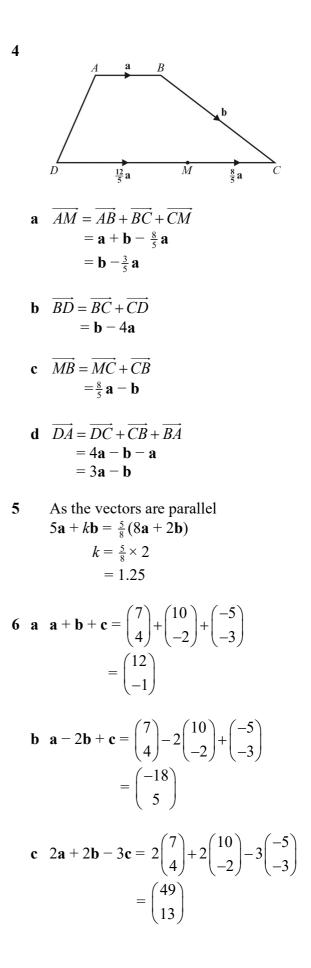
The magnitude of **R** is $2\sqrt{10}$ N

- **b** $\tan \theta = \frac{1}{3}$ $\theta = \tan^{-1} \frac{1}{3}$ $= 18^{\circ} \text{ (nearest degree)}$
- 2 a (Path of S) = $(4\mathbf{i} 6\mathbf{j}) (-2\mathbf{i} 4\mathbf{j})$ = $6\mathbf{i} - 2\mathbf{j}$

2



- **b** Expressing velocity, **v**, in km h⁻¹: $\mathbf{v} = (6\mathbf{i} - 2\mathbf{j}) \times \frac{60}{40}$ $\mathbf{v} = 9\mathbf{i} - 3\mathbf{j}$ Then the speed is: $\sqrt{9^2 + (-3)^2} = \sqrt{90} = 3\sqrt{10}$ Speed is 9.49 km h⁻¹ (3 s.f.) to the left.
- **3** a Speed = $\sqrt{9^2 + 4^2}$ = $\sqrt{97}$ = 9.85 m s⁻¹ (3 s.f.)
 - **b** Distance = speed × time = $\sqrt{97} \times 6$ = 59.1 m
 - **c** This model becomes less accurate as *t* increases because it ignores friction and air resistance.



1

Pure Mathematics Year 1/AS

7 a
$$\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC}$$

 $= -(3\mathbf{i} + 5\mathbf{j}) + 6\mathbf{i} + 3\mathbf{j}$
 $= 3\mathbf{i} - 2\mathbf{j}$
b $\tan x = \frac{5}{3}$
 $x = \tan^{-1}\frac{5}{3}$
 $= 59.036...$
 $\tan y = \frac{1}{2}$
 $y = \tan^{-1}\frac{1}{2}$
 $= 26.565...$
 $\angle BAC = 59.036... - 26.565...$
 $= 32.5^{\circ} (3 \text{ s.f.})$
c Area $= \frac{1}{2}bc \sin A$
 $b = \sqrt{6^2 + 3^2} = \sqrt{45}$
 $c = \sqrt{3^2 + 5^2} = \sqrt{34}$
Area $= \frac{1}{2} \times \sqrt{45} \times \sqrt{34} \times \sin 32.5^{\circ}$
 $= 10.508...$
 $= 10.5 \text{ units}^2 (3 \text{ s.f.})$
8 a $4\mathbf{i} - 3\mathbf{j} + 2p\mathbf{i} - p\mathbf{j} = \lambda(2\mathbf{i} - 3\mathbf{j})$
 $(4 + 2p)\mathbf{i} - (3 + p)\mathbf{j} = 2\lambda\mathbf{i} - 3\lambda\mathbf{j}$
Equating coefficients:
 $4 + 2p = 2\lambda$ and $3 + p = 3\lambda$
Solving simultaneously:
Rearranging the $3 + p = 3\lambda$
 $p = 3\lambda - 3$
Using substitution:
 $4 + 2(3\lambda - 3) = 2\lambda$
 $4 + 6\lambda - 6 = 2\lambda$
 $4\lambda = 2$
 $\lambda = \frac{1}{2}$
 $p = -1.5$
b $\mathbf{a} + \mathbf{b} = 4\mathbf{i} - 3\mathbf{j} - 3\mathbf{i} + 1.5\mathbf{j}$
 $= \mathbf{i} - 1.5\mathbf{j}$

9 **a i** a unit vector is $\frac{\mathbf{a}}{|\mathbf{a}|}$

 $\mathbf{a} = \begin{pmatrix} 8\\15 \end{pmatrix}$

 $|\mathbf{a}| = \sqrt{8^2 + 15^2} = \sqrt{289} = 17$

a i
$$\frac{\mathbf{a}}{|\mathbf{a}|} = \frac{1}{17} {8 \choose 15} = \frac{1}{17} (8\mathbf{i} + 15\mathbf{j})$$

ii $\tan \theta = \frac{15}{8}$
 $\theta = \tan^{-1} \frac{15}{8}$
 $= 61.9^{\circ} (3 \text{ s.f.}) \text{ above}$
b i a unit vector is $\frac{\mathbf{b}}{|\mathbf{b}|}$
 $\mathbf{b} = {24 \choose -7}$
 $|\mathbf{b}| = \sqrt{24^2 + 7^2}$
 $= \sqrt{625}$
 $= 25$
 $\frac{\mathbf{b}}{|\mathbf{b}|} = \frac{1}{25} {25 \choose -7}$
 $= \frac{1}{25} (24\mathbf{i} - 7\mathbf{j})$
ii $\tan \theta = \frac{7}{24}$
 $\theta = \tan^{-1} \frac{7}{24}$
 $= 16.3^{\circ} (3 \text{ s.f.}) \text{ below}$
c i a unit vector is $\frac{\mathbf{c}}{|\mathbf{c}|}$
 $\mathbf{c} = {-9 \choose 40}$
 $|\mathbf{c}| = \sqrt{9^2 + 40^2}$
 $= \sqrt{1681}$
 $= 41$
 $\frac{\mathbf{c}}{|\mathbf{c}|} = \frac{1}{41} {-9 \choose 40}$
 $= \frac{1}{41} (-9\mathbf{i} + 40\mathbf{j})$
ii $\tan x = \frac{40}{9}$

9

$$x - \tan^{-9}$$

= 77.3° (3 s.f.)
 $\theta = 180^{\circ} - 77.3^{\circ}$
= 102.7° above

Pure Mathematics Year 1/AS

d i a unit vector is
$$\frac{\mathbf{d}}{|\mathbf{d}|}$$

$$\mathbf{d} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

$$|\mathbf{d}| = \sqrt{3^2 + 2^2}$$

$$= \sqrt{13}$$

$$\frac{\mathbf{d}}{|\mathbf{d}|} = \frac{1}{\sqrt{13}} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

$$= \frac{1}{\sqrt{13}} (3\mathbf{i} - 2\mathbf{j})$$

9

ii
$$\tan \theta = \frac{2}{3}$$

 $\theta = \tan^{-1}\frac{2}{3}$
 $= 33.7^{\circ} (3 \text{ s.f.}) \text{ below}$

10
$$\cos 55^\circ = \frac{p}{15}$$

 $p = 15 \cos 55^\circ$
 $p = 8.6$

Using Pythagoras' theorem: $q = \sqrt{15^2 - 8.6^2}$ = 12.3p = 8.6 and q = 12.3

11
$$|3\mathbf{i} - \mathbf{k}\mathbf{j}| = \sqrt{3^2 + k^2}$$

= $\sqrt{9 + k^2}$
= $3\sqrt{5}$
 $\sqrt{9 + k^2} = \sqrt{45}$
 $k^2 + 9 = 45$
 $k^2 = 36$
 $k = \pm 6$

Q12 has been replaced in the summer 2020 impression of the book onwards. This is the answer to the updated question.

12 a
$$\overrightarrow{AB} = \mathbf{b} - \mathbf{a}, \overrightarrow{AP} = 3\overrightarrow{AB} = 3\mathbf{b} - 3\mathbf{a}$$

 $\overrightarrow{MP} = \overrightarrow{MA} + \overrightarrow{AP}$
 $= \frac{1}{2}\overrightarrow{OA} + \overrightarrow{AP}$
 $= \frac{1}{2}\mathbf{a} + 3\mathbf{b} - 3\mathbf{a}$
 $= 3\mathbf{b} - \frac{5}{2}\mathbf{a}$
b $\overrightarrow{ON} = \overrightarrow{OM} + \overrightarrow{MN}$

$$ON = OM + MN$$
$$= \frac{1}{2}\mathbf{a} + k\left(3\mathbf{b} - \frac{5}{2}\mathbf{a}\right)$$
$$= \left(\frac{1}{2} - \frac{5}{2}k\right)\mathbf{a} + 3k\mathbf{b}$$

c Since \overrightarrow{ON} is parallel to **b**, component of **a** is 0: $\frac{1}{2} - \frac{5}{2}k = 0 \Rightarrow k = \frac{1}{5}$ so $\overrightarrow{ON} = \frac{3}{5}\overrightarrow{OB}$, so ON : NB = 3 : 2 as required.

This is the answer to Q12 from older impressions of the book. 12 U \overrightarrow{OV} \overrightarrow{OV} \overrightarrow{OV} \overrightarrow{OV}

12 a Using
$$ON = OM + MN$$

 $\overrightarrow{ON} = \frac{3}{5}\mathbf{a} + \lambda\mathbf{b}$
 $(1 - \lambda)\mathbf{a} + \lambda\mathbf{b} = \frac{3}{5}\mathbf{a} + \lambda\mathbf{b}$
Equating coefficients
 $1 - \lambda = \frac{3}{5}$
 $\lambda = \frac{2}{5}$
 $\overrightarrow{ON} = \frac{3}{5}\mathbf{a} + \frac{2}{5}\mathbf{b}$
b $\overrightarrow{MN} = \lambda\mathbf{b}$
 $= \frac{2}{5}\mathbf{b}$
c $\overrightarrow{AN} = \frac{2}{5}(-\mathbf{a} + \mathbf{b})$
 $\overrightarrow{AB} = -\mathbf{a} + \mathbf{b}$

Therefore, AN : NB = 2 : 3

Pure Mathematics Year 1/AS

- **13 a** $\tan \theta = \frac{1}{3}$ $\theta = \tan^{-1} \frac{1}{3}$ $= 18.4^{\circ}$ below
 - **b** $4\mathbf{i} 5\mathbf{j} + p\mathbf{i} + q\mathbf{j} = \lambda(3\mathbf{i} \mathbf{j})$ $(4 + p)\mathbf{i} + (q - 5)\mathbf{j} = 3\lambda\mathbf{i} - \lambda\mathbf{j}$ $4 + p = 3\lambda$ and $q - 5 = -\lambda$

Multiplying the second equation by 3: $3q - 15 = -3\lambda$

Solving simultaneously: 4 + p = -3q + 15p + 3q = 11

c When
$$p = 2$$
, $\lambda = 2$.
 $\mathbf{R} = 2(3\mathbf{i} - \mathbf{j})$
 $= 6\mathbf{i} - 2\mathbf{j}$
 $|\mathbf{R}| = \sqrt{6^2 + 2^2}$
 $= \sqrt{40}$
 $= 2\sqrt{10}$ N

14
$$\mathbf{v} - \mathbf{u} = (15\mathbf{i} - 3\mathbf{j}) - (3\mathbf{i} + 4\mathbf{j})$$

= $12\mathbf{i} - 7\mathbf{j}$
 $|\mathbf{a}| = \frac{\sqrt{12^2 + 7^2}}{2}$
= $\frac{\sqrt{193}}{2}$

Challenge

$$y = 5 - \frac{5}{3}x$$

Using Pythagoras' theorem: $x^2 + y^2 = \frac{17}{2}$

Solve the equations simultaneously.
Substitute
$$y = 5 - \frac{5}{3}x$$
 into $x^2 + y^2 = \frac{17}{2}$.
 $x^2 + (5 - \frac{5}{3}x)^2 = \frac{17}{2}$
 $x^2 + 25 - \frac{50}{3}x + \frac{25}{9}x^2 - \frac{17}{2} = 0$
 $18x^2 + 450 - 300x + 50x^2 - 153 = 0$
 $68x^2 - 300x + 297 = 0$

Using the quadratic formula: x =

$$x = \frac{300 \pm \sqrt{9216}}{136}$$

$$x = \frac{300 \pm 96}{136}$$

$$x = \frac{99}{34} \text{ or } x = \frac{51}{34}$$

When $x = \frac{99}{34}, y = \frac{5}{34}$
When $x = \frac{51}{34}, y = \frac{5}{2}$
 $\overrightarrow{OB} = \frac{99}{34}\mathbf{i} + \frac{5}{34}\mathbf{j} \text{ or } \overrightarrow{OB} = \frac{51}{34}\mathbf{i} + \frac{5}{2}\mathbf{j}$