Trigonometric identities and equations, Mixed exercise 10

1 a 237° is in the third quadrant, so cos 237° is –ve.

The angle made with the horizontal is 57°. So $\cos 237^\circ = -\cos 57^\circ$

b 312° is in the fourth quadrant so sin 312° is -ve.

The angle to the horizontal is 48° . So $\sin 312^{\circ} = -\sin 48^{\circ}$

c 190° is in the third quadrant so tan 190° is +ve.

The angle to the horizontal is 10° . So $\tan 190^{\circ} = +\tan 10^{\circ}$

2 a
$$\cos 270^\circ = 0$$

b
$$\sin 225^\circ = \sin(180 + 45)^\circ$$

 $= -\sin 45^\circ$
 $= -\frac{\sqrt{2}}{2}$

c $\cos 180^\circ = -1$ (see graph of $y = \cos \theta$)

d
$$\tan 240^\circ = \tan (180 + 60)^\circ$$

= + $\tan 60^\circ$ (third quadrant)
So $\tan 240^\circ = +\sqrt{3}$

- e $\tan 135^\circ = -\tan 45^\circ (\text{second quadrant})$ So $\tan 135^\circ = -1$
- 3 Using $\sin^2 A + \cos^2 A \equiv 1$ $\sin^2 A + \left(-\sqrt{\frac{7}{11}}\right)^2 = 1$ $\sin^2 A = 1 - \frac{7}{11}$ $= \frac{4}{11}$ $\sin A = \pm \frac{2}{\sqrt{11}}$

But A is in the second quadrant (obtuse),

so sin A is + ve.
So sin
$$A = +\frac{2}{\sqrt{11}}$$

Using tan $A = \frac{\sin A}{\cos A}$
tan $A = \frac{\left(\frac{2}{\sqrt{11}}\right)}{-\sqrt{7}/11}$
 $= -\frac{2}{\sqrt{11}} \times \frac{\sqrt{11}}{\sqrt{7}}$
 $= -\frac{2}{\sqrt{7}}$
 $= -\frac{2\sqrt{7}}{\sqrt{7}}$

(rationalising the denominator)

4 Draw a right-angled triangle with an angle

Use Pythagoras' theorem to find the hypotenuse. $(\sqrt{2})^2$

$$x^{2} = 2^{2} + (\sqrt{21})$$
$$= 4 + 21$$
$$= 25$$
So $x = 5$

$$a \sin \phi = \frac{\sqrt{21}}{5}$$

As *B* is reflex and $\tan B$ is +ve, *B* is in the third quadrant. So $\sin B = -\sin \phi$

$$=-\frac{\sqrt{2}}{5}$$

b From the diagram $\cos \phi = \frac{2}{5}$. *B* is in the third quadrant. So

$$\cos B = -\cos \phi$$
$$= -\frac{2}{5}$$

5 a Factorise $\cos^4 \theta - \sin^4 \theta$. (This is the difference of two squares. $\cos^4 \theta - \sin^4 \theta$

$$= (\cos^{2} \theta + \sin^{2} \theta) (\cos^{2} \theta - \sin^{2} \theta)$$
$$= (1) (\cos^{2} \theta - \sin^{2} \theta)$$
$$(as \cos^{2} \theta + \sin^{2} \theta \equiv 1)$$
So $\cos^{4} \theta - \sin^{4} \theta = \cos^{2} \theta - \sin^{2} \theta$

b Factorise $\sin^2 3\theta - \sin^2 3\theta \cos^2 3\theta$. $\sin^2 3\theta - \sin^2 3\theta \cos^2 3\theta$ $= \sin^2 3\theta (1 - \cos^2 3\theta)$ 5 **b** (use $\sin^2 3\theta + \cos^2 3\theta \equiv 1$)

$$\sin^2 3\theta - \sin^2 3\theta \cos^2 3\theta = \sin^2 3\theta (\sin^2 3\theta)$$
$$= \sin^4 3\theta$$

c
$$\cos^4 \theta + 2\sin^2 \theta \cos^2 \theta + \sin^4 \theta$$

= $(\cos^2 \theta + \sin^2 \theta)^2$
= 1 (since $\sin^2 \theta + \cos^2 \theta \equiv 1$)

6 a $2(\sin x + 2\cos x) = \sin x + 5\cos x$ $\Rightarrow 2\sin x + 4\cos x = \sin x + 5\cos x$ $\Rightarrow 2\sin x - \sin x = 5\cos x - 4\cos x$ $\Rightarrow \sin x = \cos x$ (divide both sides by $\cos x$) So $\tan x = 1$

b
$$\sin x \cos y + 3 \cos x \sin y$$

 $= 2 \sin x \sin y - 4 \cos x \cos y$
 $\Rightarrow \frac{\sin x \cos y}{\cos x \cos y} + \frac{3 \cos x \sin y}{\cos x \cos y}$
 $= \frac{2 \sin x \sin y}{\cos x \cos y} - \frac{4 \cos x \cos y}{\cos x \cos y}$
 $\Rightarrow \tan x + 3 \tan y = 2 \tan x \tan y - 4$
 $\Rightarrow 2 \tan x \tan y - 3 \tan y = 4 + \tan x$
 $\Rightarrow \tan y (2 \tan x - 3) = 4 + \tan x$
So $\tan y = \frac{4 + \tan x}{2 \tan x - 3}$

- 7 a LHS = $(1 + 2\sin\theta + \sin^2\theta) + \cos^2\theta$ = $1 + 2\sin\theta + 1$ since $\sin^2\theta + \cos^2\theta = 1$ = $2 + 2\sin\theta$ = $2(1 + \sin\theta)$ = RHS
 - **b** LHS = $\cos^4 \theta + \sin^2 \theta$

$$= (\cos^{2} \theta)^{2} + \sin^{2} \theta$$
$$= (1 - \sin^{2} \theta)^{2} + \sin^{2} \theta$$
$$= 1 - 2\sin^{2} \theta + \sin^{4} \theta + \sin^{2} \theta$$
$$= (1 - \sin^{2} \theta) + \sin^{4} \theta$$
$$= \cos^{2} \theta + \sin^{4} \theta$$
(using $\sin^{2} \theta + \cos^{2} \theta = 1$)
$$= RHS$$
8 **a** $\sin \theta = \frac{3}{2}$ has no solutions as
 $-1 \le \sin \theta \le 1$.

- **b** $\sin \theta = -\cos \theta$ $\Rightarrow \tan \theta = -1$ Look at the graph of $y = \tan \theta$ in the interval $0 \le \theta \le 360^\circ$. There are two solutions.
- c The minimum value of $2\sin\theta$ is -2. The minimum value of $3\cos\theta$ is -3. Each minimum value is for a different θ . So the minimum value of $2\sin\theta + 3\cos\theta$ is always greater than -5. There are no solutions of $2\sin\theta + 3\cos\theta + 6 = 0$ as the LHS can never be zero.
- **d** Solving $\tan \theta + \frac{1}{\tan \theta} = 0$ is equivalent to solving $\tan^2 \theta = -1$, which has no solutions. So there are no solutions.

9 a
$$4xy - y^2 + 4x - y \equiv y(4x - y) + (4x - y)$$

= $(4x - y)(y + 1)$

b Using **a** with $x = \sin \theta$, $y = \cos \theta$ $4\sin \theta \cos \theta - \cos^2 \theta$ $+ 4\sin \theta - \cos \theta = 0$ So $(4\sin \theta - \cos \theta)(\cos \theta + 1) = 0$ So $4\sin\theta - \cos\theta = 0$ or $\cos\theta + 1 = 0$ $4\sin\theta - \cos\theta = 0$ $\Rightarrow \tan\theta = \frac{1}{4}$ The calculator solution is $\theta = 14.0^{\circ}$. $\tan\theta$ is +ve so θ is in the first and third quadrants. So $\theta = 14.0^{\circ}, 194^{\circ}$ $\cos\theta + 1 = 0 \Rightarrow \cos\theta = -1$ So $\theta = +180^{\circ}$ (from graph) Solutions are $\theta = 14.0^{\circ}, 180^{\circ}, 194^{\circ}$

- 10 a As $\sin(90-\theta)^\circ \equiv \cos\theta^\circ$, $\sin(90-3\theta)^\circ \equiv \cos 3\theta^\circ$ So $4\cos 3\theta^\circ - \sin(90-3\theta)^\circ$ $= 4\cos 3\theta^\circ - \cos 3\theta$ $= 3\cos 3\theta^\circ$
 - **b** Using **a**, $4\cos 3\theta^\circ \sin(90 3\theta)^\circ = 2$ is equivalent to $3\cos 3\theta^\circ = 2$ so $\cos 3\theta^\circ = \frac{2}{3}$
 - Let $X = 3\theta$ and solve $\cos X^\circ = \frac{2}{3}$ in the interval $0^\circ \le X \le 1080^\circ$.
 - The calculator solution is $X = 48.19^{\circ}$ As $\cos X^{\circ}$ is + ve, X is in the first and fourth quadrants.

- Read off all solutions in the interval $0^{\circ} \le X \le 1080^{\circ}$. $X = 48.19^{\circ}, 311.81^{\circ}, 408.19^{\circ}, 671.81^{\circ},$ $768.19^{\circ}, 1031.81^{\circ}$ So $\theta = \frac{X}{3} = 16.1^{\circ}, 104, 136^{\circ}, 224^{\circ}, 256^{\circ},$ $344^{\circ}(3 \text{ s.f.})$
- 11 a $2\sin 2\theta = \cos 2\theta$ $\Rightarrow \frac{2\sin 2\theta}{\cos 2\theta} = 1$ $\Rightarrow 2\tan 2\theta = 1 \text{ since } \tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta}$ So $\tan 2\theta = 0.5$
 - **b** Solve $\tan 2\theta^\circ = 0.5$ in the interval $0^\circ \le \theta < 360^\circ$ or $\tan X^\circ = 0.5$ where $X = 2\theta$, $0^\circ \le X < 720^\circ$.

11 b The calculator solution for $\tan^{-1} 0.5$ is 26.57°. As $\tan X$ is +ve, X is in the first and third quadrants.

Read off solutions for X in the interval $0^{\circ} \le X < 720^{\circ}$. $X = 26.57^{\circ}$, 206.57°, 386.57°, 566.57° $= 2\theta$ So $\theta = \frac{X}{2}$ $= 13.3^{\circ}, 103.3^{\circ}, 193.3^{\circ}, 283.3^{\circ}(1 \text{ d.p.})$

12 a $\cos(\theta + 75)^\circ = 0.5$

Solve $\cos X^\circ = 0.5$, where $X = \theta + 75$, $75^\circ \le X < 435^\circ$. Your calculator solution for $X = 60^\circ$. As $\cos X$ is +ve, X is in the first and fourth quadrants.

Read off all solutions in the interval $75^{\circ} \le X < 435^{\circ}$. $X = 300^{\circ}, 420^{\circ}$ $\theta + 75^{\circ} = 300^{\circ}, 420^{\circ}$ So $\theta = 225^{\circ}, 345^{\circ}$

12 b $\sin 2\theta^\circ = 0.7$ in the interval $0^\circ \le \theta < 360^\circ$. Solve $\sin X^\circ = 0.7$, where $X = 2\theta$, $0^\circ \le X < 720^\circ$. The calculator solution is 44.4°. As $\sin X$ is +ve, X is in the first and second quadrants.

Read off solutions in the interval $0^\circ \le X < 720^\circ$. $X = 44.4^\circ, 135.6^\circ, 404.4^\circ, 495.6^\circ$

=
$$2\theta$$

So $\theta = \frac{X}{2}$
= 22.2°, 67.8°, 202.2°, 247.8°(1 d.p.)

13 Multiply both sides of the equation by $(1-\cos 2x)$, provided $\cos 2x \ne 1$. *Note:* In the interval given, $\cos 2x$ is never equal to 1. So $\cos 2x + 0.5 = 2 - 2\cos 2x$ $\Rightarrow 3\cos 2x - \frac{3}{2}$

$$\Rightarrow 3\cos 2x = \frac{1}{2}$$

So $\cos 2x = \frac{1}{2}$
Solve $\cos X = \frac{1}{2}$ where $X = 2x$,
 $0^{\circ} < X < 540^{\circ}$.

The calculator solution is 60° . As $\cos X$ is + ve, X is in the first and fourth quadrants.

13 Read off solutions for X in the interval $0^{\circ} < X < 540^{\circ}$. $X = 60^{\circ}$, 300°, 420° So $x = \frac{X}{2}$

$$5x = \frac{1}{2}$$

= 30°, 150°, 210°

14 Using
$$\sin^2 \theta + \cos^2 \theta \equiv 1$$

 $2\cos^2 \theta - \cos \theta - 1 = 1 - \cos^2 \theta$
 $\Rightarrow 3\cos^2 \theta - \cos \theta - 2 = 0$
 $\Rightarrow (3\cos \theta + 2)(\cos \theta - 1) = 0$
So $3\cos \theta + 2 = 0$ or $\cos \theta - 1 = 0$
For $3\cos \theta + 2 = 0$, $\cos \theta = -\frac{2}{3}$

The calculator solution is 131.8°. As $\cos \theta$ is – ve, θ is in the second a and third quadrants.

So solutions are $\theta = 131.8^{\circ}, 228.2^{\circ}$

- **15 a** The student found additional solutions after dividing by three rather than before. The students has not applied the full interval for the solutions.
 - **b** Let X = 3x $\sin X = \frac{1}{2}$

As X = 3x, then as -360° ≤ x ≤ 360° So 3 × -360° ≤ X ≤ 3 × 360° So the interval for X is -1080° ≤ X ≤ 1080° **15 b** X = 30°, 150°, 390°, 510°, 750°, 870°, -210°, -330°, -570°, -690°, -930°, -1050°

i.e. 3*x* = −1050°, −930°, −690°, −570°, −330°, −210°, 30°, 150°, 390°, 510°, 750°, 870° So *x* = −350°, −310°, −230°, −190°, −110°, −70°, 10°, 50°, 130°, 170°, 250°, 290°

16 a

- **b** The graphs intersect at two places so there are two solutions to the equation in the given range.
- c $3\sin x = 2\cos x$ $\frac{\sin x}{\cos x} = \frac{2}{3}$ $\tan x = \frac{2}{3}$ $x = 33.7^{\circ}, 213.7^{\circ}$
- 17 a Using the cosine rule

$$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$$
$$\cos B = \frac{6^2 + 11^2 - 7^2}{2 \times 6 \times 11}$$
$$\cos B = \frac{36 + 121 - 49}{132}$$
$$\cos B = \frac{9}{11}$$

b Using Pythagoras' theorem $\sqrt{11^2 - 9^2} = \sqrt{40}$

- 18 a Using the sine rule $\frac{\sin Q}{q} = \frac{\sin P}{p}$ $\frac{\sin Q}{6} = \frac{\sin 45^{\circ}}{5}$ $\sin Q = \frac{6\left(\sqrt{2}/2\right)}{5}$ $\sin Q = \frac{3\sqrt{2}}{5}$
 - **b** Using Pythagoras' theorem or identity $\cos^2 x + \sin^2 x = 1$

$$\cos Q = \frac{\sqrt{7}}{5}$$
 for the acute angle

As Q is obtuse, it is in the second quadrant where $\cos Q$ is negative.

So
$$\cos Q = -\frac{\sqrt{7}}{5}$$

19 a $3\sin^2 x - \cos^2 x = 2$ can be written as $3\sin^2 x - (1 - \sin^2 x) = 2$ which reduces to $4\sin^2 x = 3$

b
$$4\sin^2 x = 3$$

 $\sin^2 x = \frac{3}{4}$
 $\sin x = \pm \frac{\sqrt{3}}{2}$
 $x = 60^\circ, 120^\circ, -60^\circ, -120^\circ$
So the solutions are
 $x = -120.0^\circ, -60.0^\circ, 60.0^\circ, 120.0^\circ$

20 $3\cos^2 x + 1 = 4\sin x$ can be written as $3(1 - \sin^2 x) + 1 = 4\sin x$ which can be reduced to $3\sin^2 x + 4\sin x - 4 = 0$ $(3\sin x - 2)(\sin x + 2) = 0$ $\sin x = \frac{2}{3}$ or $\sin x = -2$ $\sin x = -2$ has no solutions. So $x = 41.8^\circ$, 138.2°, -221.8°, -318.2° So the solutions are $x = -318.2^\circ$, -221.8°, 41.8°, 138.2°

SolutionBank

Pure Mathematics Year 1/AS

21 a Solving equation where X = 2x + k $3 + \sqrt{3} = 3 + 2\sin(X)$ $\sqrt{3} - 2\sin(X)$

$$X = \sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

$$X = 60^{\circ} \text{ or } 180^{\circ} - 60^{\circ} = 120^{\circ}$$

$$k = 60^{\circ} - 30^{\circ} \text{ or } 120^{\circ} - 30^{\circ}$$

$$k = 30^{\circ} \text{ or } 90^{\circ}$$

b Solving equation where X = 2x + 30and $30 \le X \le 750$ $1 = 3 + 2\sin(X)$ $-2 = 2\sin(X)$ $X = \sin^{-1}(-1)$ $X = 270^{\circ} \text{ or } 270^{\circ} + 360^{\circ} = 630^{\circ}$ $x = \frac{X - 30^{\circ}}{2}$ $x = 120^{\circ} \text{ or } 300^{\circ}$

Challenge

 $\tan^{4} x - 3 \tan^{2} x + 2 = 0$ $(\tan^{2} x - 2)(\tan^{2} x - 1) = 0$ $\tan^{2} x = 2 \text{ or } \tan^{2} x = 1$ $\tan x = \pm 1 \text{ or } \pm \sqrt{2}$ $x = 45^{\circ}, 225^{\circ}, -45^{\circ}, 135^{\circ}, 315^{\circ}, 54.7^{\circ}, 234.7^{\circ}, -54.7^{\circ}, 125.3^{\circ}, 305.3^{\circ}$ So the solutions are $x = 45^{\circ}, 54.7^{\circ}, 125.3^{\circ}, 135^{\circ}, 225^{\circ}, 234.7^{\circ}, 305.3^{\circ}, 315^{\circ}$