Trigonometric ratios, Mixed Exercise 9

1

a Using area of $\triangle A B C=\frac{1}{2} a c \sin B$
$10 \mathrm{~cm}^{2}=\frac{1}{2} \times 6 \times 8 \times \sin \theta^{\circ} \mathrm{cm}^{2}$
So $10=24 \sin \theta^{\circ}$
So $\sin \theta^{\circ}=\frac{10}{24}=\frac{5}{12}$
$\Rightarrow \theta=24.6$ or 155(3 s.f.)
As θ is obtuse, $\angle A B C=155^{\circ}$ (3 s.f.)
b Using the cosine rule

$$
\begin{aligned}
b^{2}= & a^{2}+c^{2}-2 a c \cos B \\
A C^{2} & =8^{2}+6^{2}-2 \times 8 \times 6 \times \cos B \\
& =187.26 \ldots
\end{aligned}
$$

$$
A C=13.68 \ldots
$$

The third side has length 13.7 m (3 s.f.).
2 a

Using the cosine rule

$$
\begin{aligned}
\cos x^{\circ} & =\frac{3^{2}+1.2^{2}-2.4^{2}}{2 \times 3 \times 1.2} \\
& =0.65 \\
x & =\cos ^{-1}(0.65) \\
& =49.458 \ldots \\
x & =49.5(3 \text { s.f. })
\end{aligned}
$$

Using the area of a triangle formula area $=\frac{1}{2} \times 1.2 \times 3 \times \sin x^{\circ} \mathrm{cm}^{2}$

$$
=1.37 \mathrm{~cm}^{2} \text { (3 s.f.) }
$$

2 b

Using the sine rule

$$
\begin{aligned}
\frac{\sin x^{\circ}}{5} & =\frac{\sin 80^{\circ}}{6} \\
\sin x^{\circ} & =\frac{5 \sin 80^{\circ}}{6} \\
& =0.8206 \ldots \\
x & =55.2 \text { (3 s.f.) }
\end{aligned}
$$

The angle between the 5 cm and 6 cm sides is $180^{\circ}-(80+x)^{\circ}=(100-x)^{\circ}$.

Using the area of a triangle formula:
area $=\frac{1}{2} \times 5 \times 6 \times \sin (100-x)^{\circ} \mathrm{cm}^{2}$

$$
\left.=10.6 \mathrm{~cm}^{2} \text { (3 s.f. }\right)
$$

c

Use the sine rule to find the angle opposite the 3 cm side. Call this y°.

$$
\begin{aligned}
& \frac{\sin y^{\circ}}{3}=\frac{\sin 40^{\circ}}{5} \\
& \begin{aligned}
\sin y^{\circ} & =\frac{3 \sin 40^{\circ}}{5} \\
& \Rightarrow y=22.68 \ldots \\
\text { So } x & =180-(40+y) \\
& =117(3 \text { s.f. })
\end{aligned}
\end{aligned}
$$

Area of triangle $=\frac{1}{2} \times 3 \times 5 \times \sin x^{\circ}$

$$
=66.6 \mathrm{~cm}^{2}(3 \text { s.f. })
$$

3

Use the cosine rule to find angle A.

$$
\begin{aligned}
\cos A & =\frac{3^{2}+5^{2}-7^{2}}{2 \times 3 \times 5} \\
& =-0.5 \\
A & =\cos ^{-1}(-0.5) \\
& =120^{\circ}
\end{aligned}
$$

Area of triangle $=\frac{1}{2} \times 3 \times 5 \times \sin \mathrm{Acm}^{2}$

$$
\begin{aligned}
& =6.495 \ldots \mathrm{~cm}^{2} \\
& =6.50 \mathrm{~cm}^{2}(3 \text { s.f. })
\end{aligned}
$$

4 a

In $\triangle B D A, \frac{B D}{8.2}=\sin 30.6^{\circ}$
So $B D=8.2 \sin 30.6^{\circ}$
$=4.174 \ldots$
$\frac{A D}{8.2}=\cos 30.6$
$A D=8.2 \cos 30.6=7.0580 \ldots$

$$
\begin{aligned}
\angle A B D & =90^{\circ}-30.6^{\circ} \\
& =59.4^{\circ}
\end{aligned}
$$

We can use $A D$ and $B D$ to calculate the area of $\triangle A B D$ or use:
Area of $\triangle A B D=\frac{1}{2} \times 8.2 \times B D \times \sin 59.4^{\circ}$

$$
=14.7307 \ldots \mathrm{~cm}^{2}
$$

Area of $\triangle B D C=\frac{1}{2} \times 10.4 \times B D \times \sin 100^{\circ}$

$$
=21.375 \ldots \mathrm{~cm}^{2}
$$

Total area $=$ area $\triangle A B D+$ area $\triangle B D C$

$$
=36.1 \mathrm{~cm}^{2}(3 \text { s.f. })
$$

4 b

$$
\begin{aligned}
& \frac{\sin \angle A D B}{3.9}=\frac{\sin 75^{\circ}}{4.8} \\
& \begin{aligned}
\sin \angle A D B & =\frac{3.9 \sin 75^{\circ}}{4.8} \\
\angle A D B & =\sin ^{-1}\left(\frac{3.9 \sin 75^{\circ}}{4.8}\right) \\
& =51.7035 \ldots{ }^{\circ} \\
\text { So } \angle A B D & =180^{\circ}-(75+\angle A D B)^{\circ} \\
& =53.296 \ldots{ }^{\circ}
\end{aligned}
\end{aligned}
$$

Area of $\triangle A B D=\frac{1}{2} \times 3.9 \times 4.8 \times \sin \angle A B D$

$$
=7.504 \ldots \mathrm{~cm}^{2}
$$

In $\triangle B D C, \angle B D C=180^{\circ}-\angle A D B$

$$
=128.29 \ldots{ }^{\circ}
$$

Area of $\triangle B D C=\frac{1}{2} \times 2.4 \times 4.8 \times \sin \angle B D C$

$$
=4.520 \ldots \mathrm{~cm}^{2}
$$

Total area $=$ area $\triangle A B D+$ area $\triangle B D C$

$$
\left.=12.0 \mathrm{~cm}^{2} \text { (3 s.f. }\right)
$$

5

a Using the cosine rule:
$b^{2}=a^{2}+c^{2}-2 a c \cos B$

$$
\begin{aligned}
(5 \sqrt{13})^{2} & =(a \sqrt{3})^{2}+10^{2} \\
& -2 \times a \sqrt{3} \times 10 \times \cos 150^{\circ} \\
325= & 3 a^{2}+100+30 a \\
3 a^{2}+30 a-225= & 0 \\
a^{2}+10 a-75= & 0 \\
(a+15)(a-5)= & 0 \\
& \Rightarrow a=5 \text { as } a>0
\end{aligned}
$$

5 b Area $\triangle A B C=\frac{1}{2} \times 10 \times 5 \sqrt{3} \times \sin 150^{\circ}$

$$
=12.5 \sqrt{3} \mathrm{~cm}^{2}
$$

6

Using the area formula:
$1=\frac{1}{2} \times 2 \times \sqrt{2} \times \sin \theta^{\circ}$
$\Rightarrow \sin \theta^{\circ}=\frac{1}{\sqrt{2}}$
$\Rightarrow \theta=45$ or 135
But as θ is not the largest angle, θ must be 45.

Use the cosine rule to find x.

$$
\begin{aligned}
& x^{2}=2^{2}+(\sqrt{2})^{2}-2 \times 2 \times \sqrt{2} \times \cos 45^{\circ} \\
& x^{2}=4+2-4=2
\end{aligned}
$$

So $x=\sqrt{2}$
So the triangle is isosceles with two angles of 45°. It is a right-angled isosceles triangle.

7

a Use Pythagoras' theorem.

$$
\begin{aligned}
A C & =\sqrt{(1-0)^{2}+(3-1)^{2}} \\
& =\sqrt{5} \\
& =b \\
B C & =\sqrt{(3-1)^{2}+(4-3)^{2}} \\
& =\sqrt{5} \\
& =a
\end{aligned}
$$

7 a $A B=\sqrt{(3-0)^{2}+(4-1)^{2}}$

$$
=\sqrt{18}
$$

$$
=c
$$

Using the cosine rule

$$
\begin{aligned}
\cos C & =\frac{a^{2}+b^{2}-c^{2}}{2 a b} \\
\cos C & =\frac{5+5-18}{2 \times \sqrt{5} \times \sqrt{5}} \\
& =\frac{-8}{10} \\
& =\frac{-4}{5}
\end{aligned}
$$

Find $\sin C$ by using the identity, $\cos ^{2} x+\sin ^{2} x=1$ or by drawing a $3,4,5$
triangle and looking at the ratio of the sides.
b Using the area formula:
area of $\triangle A B C=\frac{1}{2} a b \sin C$

$$
\begin{aligned}
& =\frac{1}{2} \times \sqrt{5} \times \sqrt{5} \times \sin C \\
& =1.5 \mathrm{~cm}^{2}
\end{aligned}
$$

8

a Using the cosine rule

$$
\begin{aligned}
&(2 x-1)^{2}=(x+1)^{2}+(x-1)^{2} \\
&-2(x+1)(x-1) \cos 120^{\circ} \\
& 4 x^{2}-4 x+1=\left(x^{2}+2 x+1\right) \\
&+\left(x^{2}-2 x+1\right)+\left(x^{2}-1\right) \\
& 4 x^{2}-4 x+1= 3 x^{2}+1 \\
& x^{2}-4 x= 0 \\
& x(x-4)=0 \\
& \Rightarrow x= x>1 \\
& \text { b Area of } \Delta= \frac{1}{2} \times(x+1) \times(x-1) \times \sin 120^{\circ} \\
&= \frac{1}{2} \times 5 \times 3 \times \sin 120^{\circ} \\
&= \frac{1}{2} \times 5 \times 3 \times \frac{\sqrt{3}}{2}
\end{aligned}
$$

8 b Area of $\Delta=\frac{15 \sqrt{3}}{4}$

$$
\left.=6.50 \mathrm{~cm}^{2} \text { (3 s.f. }\right)
$$

9 a $b^{2}=a^{2}+c^{2}-2 a c \cos B$

$$
\begin{aligned}
& =1.4^{2}+1.2^{2}-2 \times 1.4 \times 1.2 \times \cos 70^{\circ} \\
& =1.96+1.44-1.14918768
\end{aligned}
$$

So $b=1.500027 \ldots$
So point C is 1.50 km from the park keeper's hut.
b $\frac{\sin A}{a}=\frac{\sin B}{b}$
$\frac{\sin A}{1.4}=\frac{\sin 70^{\circ}}{1.5}$
$\sin A=\frac{1.4 \sin 70^{\circ}}{1.5}$
So $A=61.28810^{\circ}$
Bearing $=360^{\circ}-\left(180^{\circ}-61.28810^{\circ}\right)$

$$
=241.29^{\circ}
$$

The bearing of the hut from point C is 241°.
c Area of $\Delta=\frac{1}{2} a c \sin B$

$$
\begin{aligned}
& =\frac{1}{2} \times 1.4 \times 1.2 \times \sin 70^{\circ} \\
& =0.78934 \ldots \\
& =0.789 \mathrm{~km}^{2}(3 \text { s.f. })
\end{aligned}
$$

10

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

$$
\cos A=\frac{20^{2}+15^{2}-12^{2}}{2(20)(15)}
$$

$$
\cos A=\frac{400+225-144}{600}
$$

So $A=36.7^{\circ}$
Area of one sail $=\frac{1}{2} b c \sin A$
$=\frac{1}{2} \times 20 \times 15 \times \sin 36.7^{\circ}$
$=89.665$...
Area of all four sails $=359 \mathrm{~m}^{2}$ (3 s.f.)

Using triangle $A B D$, the angles are 15°, 148° and 17°.
$\frac{b}{\sin B}=\frac{d}{\sin D}$
$\frac{b}{\sin 148^{\circ}}=\frac{75}{\sin 17^{\circ}}$
$b=\frac{75 \sin 148^{\circ}}{\sin 17^{\circ}}$
$b=135.936 .$. .
Using the larger right-angled triangle:
$\sin 15^{\circ}=\frac{\text { height }}{135.936}$
height $=135.936 \sin 15^{\circ}$
= 35.1829...
The height of the church tower is
35.2 m (3 s.f.).

12a A stretch of scale factor 2 in the x direction.
b A translation of +3 in the y direction.
c A reflection in the x-axis.
d A translation of 20 in the negative x direction (i.e. 20 to the left).

13 a

b $\tan \left(x-45^{\circ}\right)+2 \cos x=0$
$\tan \left(x-45^{\circ}\right)=-2 \cos x$
The graphs do not intersect so there are no solutions.

14 a As it is the graph of $y=\sin x^{\circ}$ translated, the gap between A and B is 180, so $p=300$.
b The difference in the x-coordinates of D and A is 90 , so the x-coordinate of D is 30 . The maximum value of y is 1 , so D is the point $(30,1)$.
c For the graph of $y=\sin x^{\circ}$, the first positive intersection with the x-axis would occur at 180. The point A is at 120 and so the curve has been translated by 60 to the left.

$$
k=60
$$

d The equation of the curve is
$y=\sin (x+60)^{\circ}$.
When $x=0, y=\sin 60^{\circ}=\frac{\sqrt{3}}{2}$, so $q=\frac{\sqrt{3}}{2}$.
15 a The graph of $y=\sin x$ crosses the x-axis at $\left(180^{\circ}, 0\right)$.
$\mathrm{f}(x)=\sin p x$ is a stretch horizontally with scale factor $\frac{36}{180}=\frac{1}{5}$.
$\mathrm{f}(x)=\sin 5 x$
$p=5$

b The period of $\mathrm{f}(x)$ is $360 \div 5=72^{\circ}$.
16 a

b The four shaded regions are congruent therefore the magnitude of the y value is the same for $\sin \alpha$.
$\operatorname{Sin} \alpha^{\circ}$ and $\sin (108-\alpha)^{\circ}$ have the same y value (call it k).

16 b So $\sin \alpha^{\circ}=\sin (180-\alpha)^{\circ}, \sin (180 \backslash+\alpha)^{\circ}$ and $\sin (360-\alpha)^{\circ}$ have the same y value, which will be $-k$.

$$
\text { So } \begin{aligned}
\sin \alpha^{\circ} & =\sin (180-\alpha)^{\circ} \\
& =-\sin (180+\alpha)^{\circ} \\
& =-\sin (360-\alpha)^{\circ}
\end{aligned}
$$

17 a

b i From the graph of $y=\cos \theta^{\circ}$, which shows four congruent shaded regions, if the y value at α° is k, then y at $(180-\alpha)^{\circ}$ is $-k, y$ at $(180+\alpha)^{\circ}$ is $-k$ and y at $(360-\alpha)^{\circ}$ it is $+k$.

$$
\text { So } \begin{aligned}
\cos \alpha^{\circ} & =-\cos \left(180^{\circ}-\alpha\right) \\
& =-\cos \left(180^{\circ}+\alpha\right) \\
& =\cos \left(360^{\circ}-\alpha\right)
\end{aligned}
$$

ii From the graph of $y=\tan \theta^{\circ}$, if the y value at α° is k, then at $(180-\alpha)^{\circ}$ it is is $-k$, at $\left(180^{\circ}+\alpha\right)$ it is $+k$ and at $\left(360^{\circ}-\alpha\right)$ it is $-k$.

$$
\text { So } \begin{aligned}
\tan \alpha^{\circ} & =-\tan \left(180^{\circ}-\alpha\right) \\
& =+\tan \left(180^{\circ}+\alpha\right) \\
& =-\tan \left(360^{\circ}-\alpha\right)
\end{aligned}
$$

18 a

b There are 4 complete waves in the interval $0 \leq x \leq 24^{\circ}$ so there are 4 sand dunes in this model.

18 c The sand dunes may not all be the same height.

Challenge

$\angle A C B=\tan ^{-1} 1=45^{\circ}$
Show that $\theta+\phi=45^{\circ}$
$\sin \theta=\frac{1}{\sqrt{5}}$
Using the sine rule:

$$
\begin{aligned}
& \frac{\sin \left(180^{\circ}-\theta-\phi\right)}{5}=\frac{\sin \theta}{\sqrt{10}} \\
& \sin \left(180^{\circ}-\theta-\phi\right)=\frac{5 \sin \theta}{\sqrt{10}}
\end{aligned}
$$

Substituting $\sin \theta=\frac{1}{\sqrt{5}}$:

$$
\begin{aligned}
\sin \left(180^{\circ}-\theta-\phi\right) & =\frac{5\left(\frac{1}{\sqrt{5}}\right)}{\sqrt{10}} \\
& =\frac{5}{\sqrt{50}} \\
& =\frac{5}{5 \sqrt{2}} \\
& =\frac{1}{\sqrt{2}}
\end{aligned}
$$

$\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=45^{\circ}$, but angle $180^{\circ}-\theta-\phi$ is
obtuse.
So, $180^{\circ}-\theta-\phi=180^{\circ}-45^{\circ}=135^{\circ}$
Therefore, $\theta+\phi=45^{\circ}$
So, $\angle A E B+\angle A D B=\angle A C B$

