Straight line graphs 5H

1 a i Gradient =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

= $\frac{600 - 200}{12 - 4}$
= $\frac{400}{8}$
= 50
 $k = 50$
Direct proportion equations

Direct proportion equations go through the origin so c = 0.

ii
$$d = kt + c$$
 $k = 50, c = 0$
 $d = 50t$

b i Gradient =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

= $\frac{9 - 3}{30 - 10}$
= $\frac{6}{20}$
= $\frac{3}{10}$
 $k = \frac{3}{10}$

ii
$$C = kt + c$$
 $k = \frac{3}{10}, c = 0$
 $C = \frac{3}{10}t$

c i Gradient =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

= $\frac{18 - 6}{30 - 10}$
= $\frac{12}{20}$
= $\frac{3}{5}$
 $k = \frac{3}{5}$
ii $p = kt + c$ $k = \frac{3}{5}, c = 0$

 $p = \frac{3}{5}t$

The points do not lie on a straight line, so a linear model is not appropriate.

The points lie on a straight line so a linear model is appropriate.

The points do not lie on a straight line, so a linear model is not appropriate.

Pure Mathematics Year 1/AS

b The points lie on a straight line so a linear model is appropriate.

c Gradient =
$$\frac{y_2 - y_1}{x_2 - x_1}$$
$$= \frac{58.2 - 45}{110 - 0}$$
$$= \frac{13.2}{110}$$
$$= 0.12$$
$$E = ah + b$$
$$a \text{ is the gradient} = 0.12$$
$$b \text{ is the y-intercept} = 45$$
$$E = 0.12h + 45$$

d $a = \pounds 0.12$, this is the cost of 1 kilowatt hour of electricity. $b = \pounds 45$, this is the fixed charge for the electricity supply (per month or per quarter).

e When
$$h = 65$$
:
 $E = 0.12(65) + 45$
 $= £52.80$
4 a
 $\underbrace{300}_{0} \underbrace{500}_{0} \underbrace{400}_{0} \underbrace{500}_{0} \underbrace{500}_{0} \underbrace{400}_{0} \underbrace{500}_{0} \underbrace{500}_{$

b The points do not lie on a straight line, so a linear model is not appropriate.

a
$$(x_1, y_1) = (6, 7100)$$

 $(x_2, y_2) = (13, 9550)$
Gradient $= \frac{y_2 - y_1}{x_2 - x_1}$
 $= \frac{9550 - 7100}{13 - 6}$
 $= \frac{2450}{7}$
 $= 350$
 $C = ad + b$
 $C = 350d + b$
Substituting $d = 6$ and $C = 7100$ into C
 $= 350d + b$ gives:
 $7100 = 350(6) + b$
 $b = 5000$
 $C = 350d + 5000$

5

- **b** $a = \pounds 350$, this is the daily fee charged by the web designer. $b = \pounds 5000$, this is the flat rate fee charged by the web designer.
- c Substitute $C = 13\ 400$ into C = 350d + 5000 to give: $13\ 400 = 350d + 5000$ d = 24The designer spent 24 days working on the website.
- **6 a** $(x_1, y_1) = (9, 48.2), (x_2, y_2) = (20, 68)$

Gradient =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

= $\frac{68 - 48.2}{20 - 9}$
= $\frac{19.8}{11}$
= 1.8
 $F = 1.8C + b$
Substituting $C = 9$ and $F = 48.2$ into
 $F = 1.8C + b$ gives:
 $48.2 = 1.8(9) + b$
 $b = 32$
 $F = 1.8C + 32$

Pure Mathematics Year 1/AS

- **6 b** a = 1.8 which is the increase in the Fahrenheit temperature for every 1 degree increase in the Celsius temperature. b = 32 which is the Fahrenheit temperature when the Celsius temperature is zero.
 - c Substitute F = 101.3 into F = 1.8C + 32 to give: 101.3 = 1.8C + 32 C = 38.5The temperature 101.3 °F is 38.5 °C.
 - **d** F = 1.8C + 32When F = C: F = 1.8F + 32 -0.8F = 32 F = -40-40 °F is the same as -40 °C.
- 7 a Gradient = 750 Intercept on the vertical axis = 17 500 n = 750t + 17 500
 - **b** The assumption is that the number of homes receiving internet connection will increase by the same amount each year.
- 8 a The data can be approximated to a linear model as all of the points lie close to the line of best fit shown.

b Gradient =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

= $\frac{177 - 165}{27 - 24}$
= 4
 $h = 4f + b$
Substituting $f = 24$ and $h = 165$ into
 $h = 4f + b$ gives:
 $165 = 4(24) + b$
 $b = 69$
 $h = 4f + 69$

- 8 c Substituting f = 26.5 into h = 4f + 69 gives: h = 4(26.5) + 69= 175 cm
- 9 a
 - **b** Solve $P = -\frac{3}{4}Q + 35$ and $P = \frac{2}{3}Q + 1$ simultaneously: $-\frac{3}{4}Q + 35 = \frac{2}{3}Q + 1$ $34 = \frac{17}{12}Q$ Q = 24Substituting Q = 24 into P gives: $P = \frac{2}{3}Q + 1$: P $= \frac{2}{3}(24) + 1$ = 17P = 17, Q = 24