Straight line graphs 5E

1 a $y=5 x-2, m=5$
$15 x-3 y+9=0$
Parallel lines have the same gradient.
Rearrange the second equation to give:
$3 y=15 x+9$
$y=5 x+3, m=5$
The lines have the same gradients so are parallel.
b $7 x+14 y-1=0$
$y=\frac{1}{2} x+9, m=\frac{1}{2}$
Parallel lines have the same gradient.
Rearrange the first equation to give:

$$
\begin{aligned}
14 y & =-7 x+1 \\
y & =-\frac{1}{2} x+\frac{1}{14}, m=-\frac{1}{2}
\end{aligned}
$$

The lines have different gradients so are not parallel.
c $4 x-3 y-8=0$
$3 x-4 y-8=0$
Parallel lines have the same gradient.
Rearrange the first equation to give:
$3 y=4 x-8$
$y=\frac{4}{3} x-\frac{8}{3}, m=\frac{4}{3}$
Rearrange the second equation to give:
$4 y=3 x-8$
$y=\frac{3}{4} x-2, m=\frac{3}{4}$
The lines have different gradients so are not parallel.

2 The gradient of r is:

$$
\begin{aligned}
\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & =\frac{8-4}{6-1} \\
& =\frac{4}{5}
\end{aligned}
$$

The gradient of s is:

$$
\begin{aligned}
\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & =\frac{9-(-3)}{20-5} \\
& =\frac{12}{15} \\
& =\frac{4}{5}
\end{aligned}
$$

2 The gradients are equal, so the lines are parallel.

3 If $A(-6,2), B(4,8), C(6,1)$ and
$D(-9,-8)$ are coordinates of a trapezium, line $A B$ is parallel to $C D$ or $B C$ is parallel to $D A$.
Parallel lines have the same gradient.
The gradient of $A B=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
=\frac{8-2}{4-(-6)}
$$

$$
=\frac{6}{10}
$$

$$
=\frac{3}{5}
$$

The gradient of $C D=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
=\frac{-8-1}{-9-6}
$$

$$
=\frac{-9}{-15}
$$

$$
=\frac{3}{5}
$$

Gradient of $A B=$ gradient of $C D$.
$A B$ is parallel to $C D$, therefore $A B C D$ is a trapezium.

4 The line is parallel to $y=5 x+8$, so $m=5$.
The line intercepts the y-axis at $(0,3)$, so $c=3$.
Using $y=m x+c$, the equation of the line is $y=5 x+3$.

5 The line is parallel to $y=-\frac{2}{5} x+1$, so $m=-\frac{2}{5}$.
The line intercepts the y-axis at $(0,-4)$, so $c=-4$.

5 Using $y=m x+c$, the equation of the line is
$y=-\frac{2}{5} x-4$.
Multiply each term by 5:

$$
\begin{aligned}
5 y & =-2 x-20 \\
2 x+5 y & =-20 \\
2 x+5 y+20 & =0
\end{aligned}
$$

$6 \quad 3 x+6 y+11=0$

$$
6 y+11=-3 x
$$

$$
6 y=-3 x-11
$$

$$
y=-\frac{3}{6} x-\frac{11}{6}
$$

$$
y=-\frac{1}{2} x-\frac{11}{6}
$$

The line is parallel to $y=-\frac{1}{2} x-\frac{11}{6}$,
so $m=$.
The line intercepts the y-axis at $(0,7)$, so $c=7$.
Using $y=m x+c$, the equation of the line is $y=-\frac{1}{2} x+7$.

7

$$
\begin{aligned}
2 x-3 y-1 & =0 \\
2 x-1 & =3 y \\
3 y & =2 x-1 \\
y & =\frac{2}{3} x-\frac{1}{3}
\end{aligned}
$$

The line is parallel to $y=\frac{2}{3} x-\frac{1}{3}$, so
$m=\frac{2}{3}$.
The line intercepts the y-axis at $(0,0)$, so $c=0$.
Using $y=m x+c$:
$y=\frac{2}{3} x+0$
$y=\frac{2}{3} x$

8 The gradient of a line parallel to $y=4 x+1$ is 4 .

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-7 & =4(x-(-2)) \\
y-7 & =4(x+2) \\
y-7 & =4 x+8 \\
y & =4 x+15 \\
0 & =4 x+15-y \\
4 x-y+15 & =0
\end{aligned}
$$

The equation of the line is $4 x-y+15=0$.

