Your teacher may watch to see if you can:

• follow instructions carefully

Introduction

You are going to find out how much copper oxide can be made when some copper carbonate is thermally decomposed.

SC9b.1

$$CuCO_3(s) \rightarrow CuO(s) + CO_2(g)$$

(relative atomic masses: Cu = 63.5, C = 12, O = 16).

Aim

To compare the mass of copper oxide actually produced by the thermal decomposition of copper carbonate with the mass calculated from the equation.

Apparatus

- Bunsen burner
- heat-resistant mat
- eye protection
- mineral wool
- spatula
- copper carbonate

test tube holder

test tube

 access to a balance

▲ Safety

Wear eye protection. Wash your hands after doing the experiment. Place a plug of mineral wool in the open end of the test tube before heating.

Method

- A Find the mass of an empty test tube.
- **B** Add two spatulas of copper carbonate to the tube and measure the new mass of the tube.
- C Place a plug of mineral wool in the open end of the test tube.
- D Heat the tube with a medium flame for 2 minutes.
- E Allow the tube to cool completely on the heat-resistant mat.
- F Find the mass of the test tube and copper oxide.

Prediction

- 1 While you are waiting for the test tube of copper oxide to cool, find the mass of copper carbonate in your test tube.
- 2 Then use the balanced equation and the relative atomic masses to calculate the maximum mass of copper oxide you would expect to be made.

Recording your results

3 Draw a table to record your results.

Considering your results/conclusions

- 4 Calculate the mass of copper carbonate used and the mass of copper oxide produced.
- 5 Compare the mass of copper oxide produced with the mass you calculated using the balanced equation.

Evaluation

- 6 Try to explain any difference between your experimental value and your calculated mass.
- 7 Suggest ways of improving the experiment so your experimental value is closer to your calculated mass.

	Sciences SC9b.1	Decomposition of copper carbonate	
N	Name Class	Date	
P	Prediction		
1	While you are waiting for the test tube of copper oxide to cool, find the mass of copper carbonate in your test tube and record it in the table below.		
2	Use the balanced equation and the relative atomic masses to calculate the maximum mass of copper oxide you would expect to be made, using the steps below.		
	$CuCO_3(s) \rightarrow CuO(s) + CO_2(g)$		
	(relative atomic masses: $Cu = 63.5$, $C = 12$, $O = 16$)		
	Calculate the relative formula mass of CuCO ₃		
	Calculate the relative formula mass of CuO		
	Complete the following: $CuCO_3$ makes CuO, so g	of CuCO ₃ make g of CuO	
	Write the fraction for the mass of CuO that should be formed from	1 g of CuCO ₃ .	

Now calculate the mass of CuO that should be formed from the mass of $CuCO_3$ that you started with.

Recording your results

3 Complete the table to show your results.

Mass of empty test tube (g)	
Mass of test tube + copper carbonate (g)	
Mass of test tube + copper oxide (g)	
Mass of copper carbonate used (g)	
Mass of copper oxide formed (g)	

Considering your results

- 4 Calculate the mass of copper oxide produced and write this in the table above.
- 5 Compare the mass of copper oxide produced with the mass you calculated using the balanced equation.

Evaluation

6 Try to explain any difference between your experimental value and your calculated mass.

7 Suggest a way of improving the experiment so that your experimental value is closer to your calculated mass.