
Unit 1 Answers

1.1 Two-way tables and bar charts

1 a, b, c, d

- b 40 students
- **c** e.g. Hockey; while fewer people chose it overall, all three schools have roughly equal numbers so they will be equally able to send teams.

1.2 Averages and range

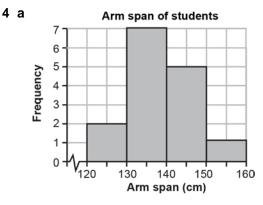
- **1 a i** 7
 - **ii** 2
 - b John's data
- 2 2 children
- 3 2.77 stars
- 4 e.g. Type A produces plants which are more consistent in height (the range is smaller).

Type A also produces taller plants in general than type B (the mean is larger).

5 a £50

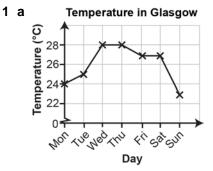
1

- **b** mean £11.90, median £9.00, mode £10.00
- c e.g. The median; the mean is skewed by the extreme value and the mode is higher than the pocket money of half the group.


1.3 Grouped data

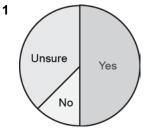
- 1 a 18 weekends
 - b 25 weekends
 - **c** 300–399
- 2 a discrete
 - **b** continuous
 - c continuous
 - d discrete

3 a


Arm span, s (cm)	Frequency
120 ≤ <i>s</i> < 130	2
130 ≤ <i>s</i> < 140	7
140 ≤ <i>s</i> < 150	5
150 ≤ <i>s</i> < 160	1

b 130 cm $\leq s <$ 140 cm

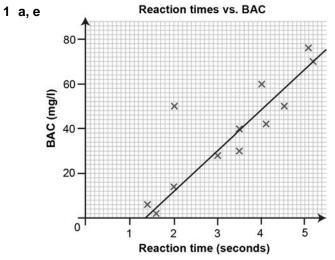
b 6 students


1.4 More graphs

b e.g. This data only covers one week; over the course of the next few months the season will change.

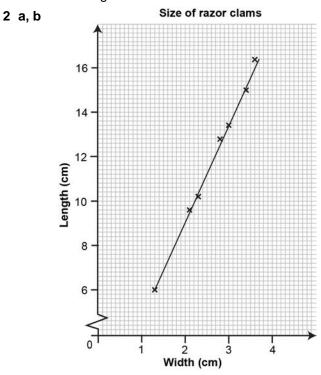
- **2** a 90°C
 - **b** 5°C
 - c Pan B takes 30 seconds longer to reach 100°C, this is a quarter longer than pan A.
- 3 a The vertical axis starts at 90.
 - **b** The vertical axis has a different scale from the horizontal axis.
 - c The horizontal axis steps are not all equal.

1.5 Pie charts


2 a

Pet	Frequency	Angle
Cat	6	120°
Dog	10	200°
Other	2	40°

b


Car	Percentage	Angle
BMW	25%	90°
Ford	25%	90°
Seat	40%	144°
Lotus	10%	36°

1.6 Scatter graphs and correlation

b There is a positive correlation.

- **c** 60 mg/l
- **d** The point at 50 mg/l and 2 s. This is a clear outlier where the reaction time is lower than the line of best fit suggests.
- e See graph
- f about 50 mg/l.

c i about 11 cm ii about 2.6 cm

1 Strengthen

Averages and range

- **1 a i** 6
 - ii 2.8
 - **bi** 1
 - ii 2.4

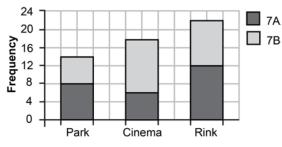
2 a

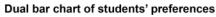
TVs	Frequency	Total TVs		
1	5	5		
2	8	16		
3	5	15		
4	6	24		
Total	24	60		

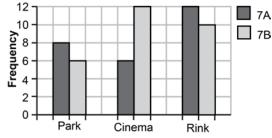
b 60 TVs

c 24 friends

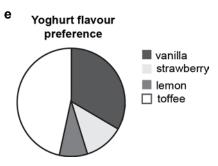
d 2.5 TVs


Charts and tables


3 a, b


	7A	7B
Park	8	6
Cinema	6	12
Rink	12	10

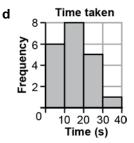
Compound bar chart of students' preferences



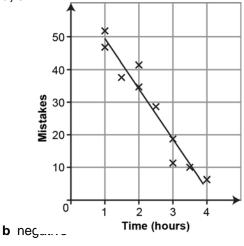
4 a 24°

- **b** 1 sector
- c 2 sectors

d


Flavour	Frequency	Sector angle
Vanilla	5	120°
Strawberry	2	48°
Lemon	1	24°
Toffee	7	168°

Time, t (s)	Tally	Frequency
0 ≤ <i>t</i> < 10	 	6
10 ≤ <i>t</i> < 20	₩ 11	8
$20 \leq t < 30$		5
$30 \le t < 40$		1


c 10 s ≤ *t* < 20 s

Line graphs, scatter graphs and correlation

6 The first graph, because it has a steeper increase due to the different scale.

7 a, c

d about 33 mistakes

1 Extend

- 1 a Bryony
 - **b** 50%
 - c 40 replies

d

	Unsure	No	Yes
Aaron	40	100	60
Bryony	4	1	5

2 a 18 000 people

- **b** 705 000 houses
- **c** The scales for homeless people and total housing is different, so they aren't comparable.

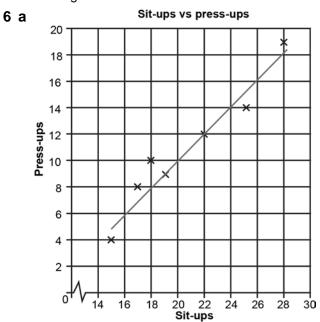
3 a i 79 kg

ii 20 kg

iii 80.67 kg

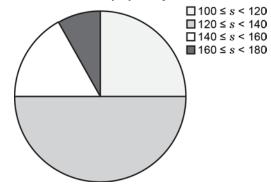
b e.g. The 1500 m runners are on average almost 20 kg lighter than the 100 m runners. The masses of the 1500 m runners are more similar than those of the 100 m runners.

4 a


	25 ≤ <i>m</i> < 35	35 ≤ <i>m</i> < 45	45 ≤ <i>m</i> < 55	Total
Boys	7	6	3	16
Girls	3	7	4	14
Total	10	13	7	30

b 9 boys

c The mode mass for girls is $35 \le m < 45$, whereas the mode mass for boys is lighter, at $25 \le m < 35$. We can only estimate the mean because the data is grouped.


5 a 30.8 g

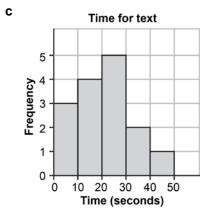
b	160.8	α
	100.0	9

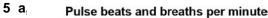
b about 14 press-ups

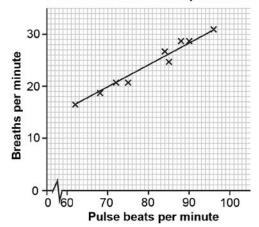
C Number of sit-ups per day

d $120 \le s < 140$

e 140


1 Unit test


- 1 a 70 items
 - **b** 50 mugs
 - **c** 150 items
 - **d** 120 mugs
- **2 a** The median; e.g. the mode is low compared to her general scores and the mean is skewed by the extreme value of 39.
- **3** 290.5


4 a

Time, t (s)	Tally	Frequency
$0 \le t < 10$		3
$10 \le t < 20$	=	4
$20 \leq t < 30$	Ħ	5
$30 \leq t < 40$	=	2
$40 \leq t < 50$		1

b 20 s ≤ *t* < 30 s

- **b** There is a positive correlation between breathing rate and pulse rate.
- c about 24 breaths per minute

Unit 2 Answers

2.1 Factors, primes and multiples

1 2, 3, 5, 7, 11, 13, 17, 19, 23 **2 a i** 1, 2, 3, 4, 6, 12 ii 1, 2, 3, 6, 9, 18 iii 1, 5, 25 **b** i 2, 3 ii 2, 3 iii 5 **3** 5, 6, 15, 16, 30, 40, 60 **4** a 1, 2, 3, 6 **b** 1, 3, 5, 15 **c** 1, 3 **d** 3 **e**i 4 **ii** 9 **5 a** 4, 8, 12, 16, 20, 24, 28, 32 **b** 8, 16, 24, 32, 40, 48, 56, 64 **c** 8, 16, 24, 32 **d** 8 6 30 turns

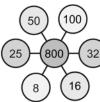
2.2 Using negative numbers

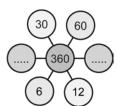
```
1 a –2
  b 4
  c -9
  d –6
2 a i 5, 4, 3, 2
    ii 3, 4, 5, 6
  b i 4-2
    ii 4+2
  C -, +
3 a 5
  b 4
  c -17
  d 1
4 a i 0, -5, -10
    ii -5, 0, 5, 10
  b negative, negative, positive
5 a -25
  b -12
```

c 36
d -30
6 a -7
b -10
c 3

2.3 Multiplying and dividing

1 a i 30,600


- ii 2800
- **b**i 608
 - ii 2774


2 a 168

- **b** 168
- **c** 168

d 2×84 or 4×42 or 7×24 or 8×21

For ii any two numbers that multiply to give 360 other than 30×12 and 60×6 e.g. 10×36 , 5×71 , 20×18 etc.

ii

4 47 r 6

- 5 a 28
 - **b** 32 r 5
 - **c** 19 r 6

2.4 Squares and square roots

1 a

	1 ²	2 ²	3 ²	4 ²	5 ²	6 ²	7 ²	8 ²	9 ²	10 ²	11 ²	12 ²	13 ²	14 ²	15 ²
	1	4	9	16	25	36	49	64	81	100	121	144	169	196	225
ł	bi 3														
	ii 7														
	iii 12														
2 a	ii — 5														
	ii 100, 100, 10, -10														
ł	b i 4, -4														
	ii 15, –15														
	iii 2,	-2													
3	Tammy	becau	se you	can't h	ave a	negativ	e leng	th.							

4 a $\sqrt{361} = 19$

b $\sqrt{30.25} = 5.5$

```
c 4.9^2 = 24.01

5 a i 5.3

iii 6.9 - Almost \sqrt{49}

iv 10.5 - almost exactly between \sqrt{100} and \sqrt{121}

b i 5.29 (2 d.p.)

ii 6.86 (2 d.p.)

iii 10.49 (2 d.p.)

6 a 9

b 900

c 90 000

d 0.09

7 a 20

b 20
```

- **c** 30
- **d** 30
- **e** 90
- f 63

d 50

2.5 More powers and roots

1							
	1 ³	2 ³	3 ³	4 ³	5 ³	6 ³	10 ³
	1	8	27	64	125	216	1000
2	a 2						
	b 6						
	c 4						
	d –3						
3	a 30						
	b 33						
	c 32						
	d 30						
4	a 40						
	b 270)					
	c 5						
	d 50						
	e 10						
	f 25						
	g 10						
	h 14						
5	a 500						
	b 100						
	c 360	00					

```
e 5
6 a 4.4 km
b 11.4 km
c 16.1 km
7 8
```

2.6 Calculations

- 1 a i 30, 260 ii 1000 iii 43 **iv** 21 **b** i 268.6 ii 562 iii 46.79 iv 22.79 **2** a 100 **b** 36 **c** 81 **d** 6 **e** 64 **f** 12 3 a 35 **b** 225 **c** 60 **d** 27 **e** 189 **f** 30 4 a 10 **b** 10 **c** 5 **d** 1 **e** 4 **f** 18
- 5 a Working left to right 9, 3, 11, 7
 b Student's own answer, e.g. √100 ÷ 2 = 5

2 Strengthen

Working with numbers

a 1, 2, 4, 8
 b 8
 2 9
 3 a 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33

```
b 5, 10, 15, 20, 25, 30
  c 15, 30
  d 15
4 a 52
  b 26
5 a 13
  b 3
  c -2
  d -10
6 a -20
  b 6
  c 21
  d –5
7 a about 6
  b about 8
  c about 18
Powers and roots
8 a 8
  b 64
  c 25
  d 100
```

```
b 67
```

10 a 48

b i e.g. 3.7
ii e.g. 5.5
iii e.g. 9.2

```
c 20
d 10
```

11 32

Working with brackets

9 a $\sqrt{16}$, $\sqrt{25}$, $\sqrt{36}$, $\sqrt{49}$, $\sqrt{64}$, $\sqrt{81}$, $\sqrt{100}$

12 a 81
b 125
c 15
13 a 8
b 5
14 a 2
b 5
c 2
d 20

e 2

```
2 Extend
 1 £310
2 5<sup>2</sup>, 3<sup>3</sup>, 11<sup>2</sup>, 5<sup>3</sup>
3 a i 1, 3, 9, 27
      ii 1, 2, 3, 4, 6, 9, 12, 18, 36
      iii 1, 3, 5, 9, 15, 45
   b 9
4 a i 4, 8, 12, 16, 20, 24, 28, 32, 36, 40
      ii 5, 10, 15, 20, 25, 30, 35, 40, 45, 50
      iii 8, 16, 24, 32, 40, 48, 56, 64, 72, 80
    b 40
5 30 seconds
6 6<sup>2</sup> is 36, so the square root of 40 must be larger than 6.
7 10 A
8 5, -5
9 a 25
    b 49
    c 124
    d 4
    e 36
10 a about 60
    b about 240
11 a <sup>3</sup>√27, <sup>3</sup>√64, <sup>3</sup>√125
   b i e.g. 1.8
      ii e.g. 3.5
      iii e.g. 4.1
12 a -27
    b 1250
    c 16
13 a 10
    b 17
14 2
```

15 Maggie, because $(-5)^2$ is two negatives multiplied, which is a positive number and is the same as 5^2 .

```
16 a A = 3000 m B = 1125 m C = 12 000 m
```

b No, it has travelled 4 times as far.

2 Unit test

- **1 a** 2
- **b** Yes
- **2 a** 21
- **b** No
- **3 a** 62

	b	41 r 9
	с	0.833
4	а	6
	b	-11
	С	15
5	e.	g. 4.2
6	7,	-7
7	а	128
	b	2
	С	30
8	а	-30
	b	64
	С	45
	d	250
9	а	about 1300
	b	about 36
10	а	18
	b	–12
11	а	3
	b	2

Unit 3 Answers

3.1 Simplifying algebraic expressions

```
1 a 3p
  b 5w
  c 7p
  d 3w
2 a 5t + 5
  b 2w + 2y
  c 7h + 5j + 2
  d 3h + 3
3 a t^2
  b n^3
  \mathbf{c} i^4
4 a 8d^2
  b 9b^2 + 3b
  c 9h^3 + 3h
  d 4c^2 + 8c
  e 5k^5
  f m^3 + 6m^2
5 a bc
  b a^{2}c^{2}
  c 3s
  d 3cd
6 a 15c^2
  b 14d^2
  c 2b
  d 3t
7 a ≡
  b ≠
  c≡
  d ≠
```

3.2 Writing algebraic expressions

- **1 a** *c* **+** 10
 - **b** *c* **- 7**
 - **c** *c* 12
 - **d** 2*c*
 - **e** 4*c*
 - f $\frac{c}{2}$
- **2** a *f* + *r*

```
b f - 5 + r + 3 or f + r - 2
3 a c + d
   b cd
   \mathbf{c} \quad c - d
   d 7c + d
   e 5d + 3c
   \mathbf{f} c^2
   \mathbf{g} \; 9d^2
   h c^2 - 1
  i \frac{c}{d}
  j 7 + \frac{9}{c}
4 a 3a + 5
   b \frac{b+4}{5}
   c 8c – 2
   d \frac{d}{2} + 3
   e 9e
   f \frac{f+3}{2}
5 a w + 2
   b w + w + 2 + w + w + 2 = 4w + 4
   c 36 cm
```

3.3 STEM: Using formulae

- **1 a** 15
 - **b** 35
 - **c** 12
 - **d** –2
 - **e** 25
 - f 4
- **2** a 12
 - **b** 20
 - **c** 15
 - **d** 18
 - **e** 3
 - **f** 2
- **3 a** 2 g/cm³
 - **b** 3.5 g/cm³
 - **c** 1.25 g/cm³
- **4 a** 80 m
 - **b** 150 m
 - **c** 100 km

- d 2 miles
- 5 a 212°F
 - **b** 32°F
 - **c** -148°F
 - $d 40^{\circ}F$
- 6 a 300 000 J
 - **b** 7069.9 J

3.4 Writing formulae

1 a number of minutes talk time b number of GB of downloads **c** £30 2 a £60 **b** £105 **c** 15*d* **d** C = 15d**3** b = g + 54 a $\frac{a+b+c+d}{4}$ **b** m = $\frac{a+b+c+d}{4}$ **c** 5 **5** $T = \frac{p+q+r}{3}$ 6 a i 17 ii -1 iii 2*a* + 7 **b** b = 2a + 7**7** a £7.75 **b** C = 4 + 1.25d

3.5 Brackets and powers

1 a 3y + 15 **b** 7h - 14 **c** 2d + 20 **d** 5p - 25 **e** 4 + 2k **2** P = a(H - 17) **3 a** $t^2 + 2t$ **b** $d^2 + 5d$ **c** $s^2 - 3s$ **d** $5y^2 + 3y$ **e** $5j - 7j^2$

f $6q^2 + 12q$ **g** $25t^2 - 5t$ **h** $30x - 9x^2$ **4** a 4 **b** 10 **c** 20 **d** 40 **e** 100 **f** 64 **g** 80 h 32 i 15 j 18 **k** 1 **5** a x^2 **b** x^2 + 10 **c** $2x^2 + x + 10$ **d** £ 65 6 a 18 **b** 105 **c** 133 **d** 32 **e** 1000 **f** 64 **g** 9 **h** 1 i 2 j 8 **k** 21

3.6 Factorising expressions

- **1 a** 1, 2 **b** 1, 2 **c** 1, 3
- **2 a** 6
- **z** a c
- **b** 7
- **3 a** 5(*x* + 3)
 - **b** 7(2*x* + 1)
 - **c** 3(2x-3)
 - **d** 5(2*x* − 3)
 - **e** 6(3x + 1)
 - **f** 5(5x 1)**g** 4(x + 3)

```
h 9(3 - x)
4 a 5(x + 4)
  b 3(x-4)
  c 10(2x-1)
  d 5(x-5)
  e 6(2 + x)
  f 9(1-4x)
5 3 ways: 6(x + 2)
                     2(3x+6) 3(2x+4)
6 a 2(2x + 3)
  b 3(3t + 4)
  c 16(g + 2)
  d 5(4d − 1)
  e 4(2 - w)
  f 2(4 + 9x)
  g 40(3q + 1)
  h 22(2 + y)
7 a 2(3a + b + 4)
  b 5(4 + 6p + 3q)
```

c *a*(*b* + 12)

3 Strengthen

Simplifying expressions

1 a 3t **b** 4p **2** a 5n **b** 9*a* **c** 8q **d** 4*b* **e** 7g + 2 **f** 4s + 5t**3** a 3*n* + 12 **b** 2*p* + 10 **c** 4*a* + 12 **d** 20 – 5*b* **4 a** 5^3 **b** t^{5} **5** $18p^2$ **6 a** $n^2 + 2n$ **b** t^2 + 3t**c** $5p + p^2$ **d** $g - g^2$ **7 a** $2a^2 + 5a$ **b** $b^{2}+9b$ **8 a** 2 **b** 2(a+3)**9** 3(a+5)

Substitution

- 10 300 km11 a 10b 3
 - **c** 12
 - **d** 40
 - **e** 35
 - **f** 4
- **12** 32
- **13 a** 2
- **b** 0
- **14 a** 8
 - **b** 9
 - **c** 16
 - **d** 20

Writing expressions and formulae

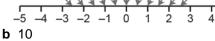
- **15 a** 5 more than *x*
 - **b** 5 less than x
 - **c** x less than 5
 - **d** 5 times x
 - e one fifth of x
- **16 a** *b* more than *a*
 - **b** a multiplied by b
 - **c** a less than b
 - **d** a divided by b

17
$$I = \frac{4c}{10}$$

18 a 3


b +12, ÷9

c $y = \frac{x+12}{9}$


3 Extend

6x
 a 150 cm²
 b 3 cm
 a £150
 b £180

- **4** 15*y* + 14
- **5** Starting at top and working left to right along rows then down: 3x + 4y, x, x + 2y, x 2y, 2x, 2y x
- 6 e.g. You multiply your number by 10 (double then multiply by 5) having added 2. Taking away ten times your original number will always leave you with this extra 2 × 5.
- **7** 2x 7
- **8** a e.g. 12, x²
 - **b** 4, $3x^2$ or any other factorisation
- **9** 6*x*, 4*x*
- **10 a** 5w²
 - **b** 12*w*
- 11 For all numbers


```
14 a x + 2, x + 3, x + 4
```

- **b** 5 *x* + 10
- **c** 5(x + 2)

d x + 2, it is the middle one of the five original numbers

15 *x* + 2

16 a x < 0
b x = 0, x = 3
c x > 3 or x < 0
d 0 < x < 3</pre>

3 Unit test

1 120 hours **2** 39 **3** 10 **4** 5p - 15 **5** a t - 5 b 4wc $\frac{p}{3}$ **6** T = j + 3s

7 a 18 **b** 30 **8** 5*e* + 3 **9** a t⁴ **b** 2p² $\mathbf{c} \quad 6y^2$ **10** $6v^3 + 3v^2$ **11** $15d^2 + 15d$ **12** 64 13 a 27 **b** 46 **c** 16 **d** 4 **14 a** 3(*d* – 4) **b** 4(3e + 4)**c** 5(3-2f)

Unit 4 Answers

4.1 Working with fractions

```
1 \frac{1}{4} and \frac{3}{12}, \frac{4}{8} and \frac{1}{2}, \frac{2}{3} and \frac{6}{9}, \frac{6}{10} and \frac{3}{5}

2 \frac{4}{5}

3 a \frac{3}{4}

b \frac{1}{5}

c \frac{3}{7}

4 \frac{3}{4}

5 a £5

b 5 kg

c 20 m/

d 60 m/

e £24

6 100 m/

7 a \frac{3}{10}

b \frac{3}{20}

c \frac{2}{5}
```

4.2 Adding and subtracting fractions

1 $\frac{9}{4} > 1\frac{3}{4}$ 2 a $1\frac{4}{5}$ b $3\frac{1}{4}$ c $13\frac{1}{2}$ 3 a $\frac{1}{2}$ b $\frac{2}{3}$ c $\frac{1}{4}$ 4 a $\frac{5}{6}$ b $\frac{1}{2}$ c $\frac{1}{7}$ 5 a $\frac{7}{10}$ b $\frac{17}{24}$ 6 a $1\frac{3}{14}$ b $1\frac{9}{20}$ c $1\frac{19}{30}$ d $1\frac{23}{30}$

4.3 Fractions, decimals and percentages

1									
Fraction	$\frac{1}{10}$	$\frac{1}{5}$	$\frac{1}{4}$	$\frac{3}{10}$	<u>2</u> 5	$\frac{1}{2}$	<u>3</u> 5	<u>7</u> 10	<u>3</u> 4
Decimal	0.1	0.2	0.25	0.3	0.4	0.5	0.6	0.7	0.75
Percentage	10%	20%	25%	30%	40%	50%	60%	70%	75%

2

Mixed number	$1\frac{1}{4}$	1 <u>2</u> 5	$1\frac{3}{4}$	$1\frac{1}{2}$	$1\frac{7}{10}$	$1\frac{4}{5}$
Decimal	1.25	1.4	1.75	1.5	1.7	1.8
Percentage	125%	140%	175%	150%	170%	180%

3 a 0.625

b 0.15

c 3.75

d 0.6

4 a $\frac{7}{20}$

b 0.35

- **c** 35 %
- **5 a** $A\frac{41}{50}$, $B\frac{21}{25}$, $C\frac{52}{55}$, $D\frac{9}{10}$, $E\frac{23}{28}$

b No, because 37.5°C produces a higher fraction of successful hatchings.

- 6 a 0.002
 - **b** 0.04
 - **c** 0.004

4.4 Multiplying and dividing fractions

1 a $4\frac{4}{5}$ kg **b** $22\frac{2}{9}$ m

- **2 a** 6
 - **b** 10

4.5 Working with mixed numbers

1 a i $1\frac{3}{4}$ hours **ii** $5\frac{1}{6}$ hours **b** $6\frac{11}{12}$ hours **2 a** 4.2 **b** 2.75 **3 a** $3\frac{7}{8}$ **b** $12\frac{8}{9}$ **c** $14\frac{7}{24}$ **4 a** $4\frac{1}{10}$ **b** $2\frac{11}{30}$ **c** $2\frac{1}{18}$ **5** $2\frac{11}{24}$ **6 a** $13\frac{1}{2}$ **b** $18\frac{2}{3}$ **7 a** $1\frac{2}{3}$ **b** $4\frac{1}{8}$

4 Strengthen

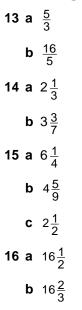
Equivalence

1	а	$\frac{1}{2}$
	b	$\frac{3}{4}$
	С	$\frac{1}{3}$
2	<u>2</u> 7	
3	а	48 dogs
	b	$\frac{3}{4}$
4	а	<u>7</u> 8
	b	$\frac{1}{30}$
5	а	0.2, 20 %
	b	0.7, 70%
	С	0.6, 60%
6		

6

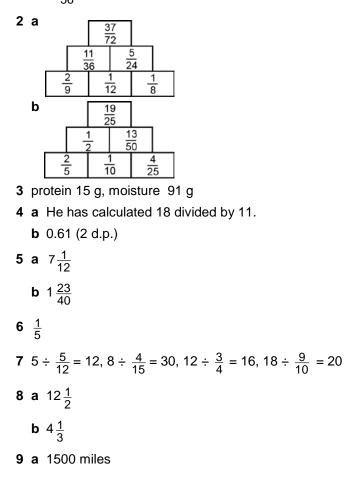
Fraction	1 <u>1</u> 10	1 <u>7</u> 10	2 <u>1</u> 5	3 <u>1</u> 5
Decimal	1.1	1.7	2.2	3.2
Percentage	110%	170%	220%	320%

7 a 0.375


b 0.625

Multiplying and dividing with fractions

```
8 a £15
b 15 kg
9 a 14
b 14
10 a 12\frac{3}{4} m
b 9\frac{1}{5} g
11 a \frac{3}{14}
b \frac{1}{4}
12 a \frac{3}{10}
```


b $\frac{7}{12}$ **c** $\frac{2}{3}$

Working with mixed numbers

4 Extend

1 e.g. $\frac{21}{56}$ its simplest form is not a fraction over 7.


```
b 1932 miles

10 a e.g. 4\frac{1}{3} - 1\frac{1}{6}

b e.g. 9\frac{1}{2} - 6\frac{1}{3}

11 \frac{1}{6}

12 \frac{3}{4}

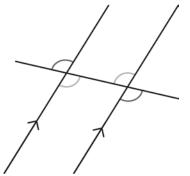
13 3\frac{14}{15} years
```

4 Unit test

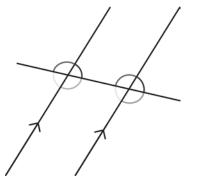
1 a $\frac{2}{3}$ **b** $\frac{1}{4}$ **c** $\frac{4}{5}$ **2** $\frac{1}{3}$ of £69, $\frac{2}{5}$ of £60, $\frac{5}{6}$ of £30 **3 a** $\frac{2}{3}$ **b** $\frac{2}{5}$ **4** $6\frac{2}{5}$ **5** $\frac{38}{7}$ **6** 15 **7**

Fraction	$\frac{1}{10}$	<u>3</u> 4	<u>3</u> 5	$1\frac{3}{10}$	$5\frac{1}{2}$
Decimal	0.1	0.75	0.6	1.3	5.5
Percentage	10%	75%	60%	130%	550%

8 a
$$6\frac{1}{3}$$


b
$$\frac{7}{18}$$

- **10** $4\frac{1}{4}$
- **11** 2^{<u>19</u>} 24
- **12** $\frac{1}{12}$
- **13** 14 $\frac{2}{5}$
- **14** 9 $\frac{5}{7}$


Unit 5 Answers

5.1 Angles and parallel lines

- 1 $a = 30^{\circ}$ (vertically opposite angles are equal) $b = 150^{\circ}$ (angles on a straight line sum to 180°) $c = 150^{\circ}$ (vertically opposite angles are equal)
- 2 $d = 60^{\circ}$ (angles on a straight line sum to 180°)
 - $e = 50^{\circ}$ (vertically opposite angles are equal)
 - $f = 130^{\circ}$ (angles on a straight line sum to 180°)
 - $g = 50^{\circ}$ (angles in a right angle sum to 90°)
 - $h = 40^{\circ}$ (vertically opposite angles are equal)
 - $i = 140^{\circ}$ (angles on a straight line sum to 180°)
- 3 a two pairs of alternate angles marked

b four pairs of corresponding angles marked

- **4** $a = 50^{\circ}$ (alternate angles are equal)
 - $b = 130^{\circ}$ (angles on a straight line sum to 180°)
 - $c = 50^{\circ}$ (vertically opposite angles are equal)
 - $d = 45^{\circ}$ (vertically opposite angles are equal)
 - $e = 135^{\circ}$ (angles on a straight line sum to 180°)
 - $f = 45^{\circ}$ (corresponding angles are equal)
 - $g = 135^{\circ}$ (corresponding angles are equal)
 - $h = 60^{\circ}$ (vertically opposite angles are equal)
 - $i = 60^{\circ}$ (corresponding angles are equal)
 - $j = 60^{\circ}$ (vertically opposite angles are equal)
 - $k = 105^{\circ}$ (alternate angles are equal)

5.2 Triangles

1

Triangle	Equilateral	Isosceles	Scalene
number of lines of symmetry	3	1	0
order of rotational symmetry	3	1	1

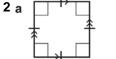
2 *x*; *y*, alternate; 180°, straight line; 180°; 180°

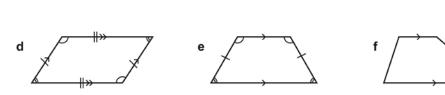
3 60° (angles in a triangle add up to 180°)

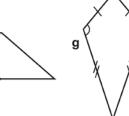
4 a 45° (base angles in an isosceles triangle are equal)

b 70° (base angles in an isosceles triangle are equal)

- **5** $x = 60^{\circ}$ (equilateral triangle)
 - $y = 120^{\circ}$ (angles on a straight line sum to 180°)


b


6 180°, straight line; 180°, 180°; *y* + *z*

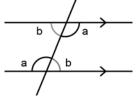

5.3 Quadrilaterals

1								
Quadrilateral	Square	Rectangle	Parallelogram	Rhombus	Kite	Arrow head	Trapezium	lsosceles Trapezium
number of lines of symmetry	4	2	0	2	1	1	0	1
order of rotational symmetry	4	2	2	2	1	1	1	1

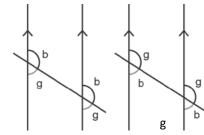
С

- 3 u c 00 , j 0 0m
 - **b** $p = 5 \text{ cm}, q = 50^{\circ}, r = 130^{\circ}$
 - **c** $w = 7 \text{ cm}, x = 105^{\circ}$
 - **d** $a = 50^{\circ}, b = 130^{\circ}, c = 5 \text{ cm}$
- 4 130° (angles in a quadrilateral sum to 360°)

5.4 Polygons


1 9 sides

- **2** 108°
- **3 a** 360°
 - **b** 36°
 - **c** 144°
- **4 a** 162°
- b 20 sides
- **5 a** 6°
 - **b** 174°


5 Strengthen

Angles and parallel lines

- **1 a** $e = 60^{\circ}$ (S), $f = 30^{\circ}$ (P or S)
 - **b** $g = 20^{\circ}$ (V)
 - **c** $h = 30^{\circ}$ (V), $i = 70^{\circ}$ (V), $j = 80^{\circ}$ (S)
- **2** two pairs of alternate angles marked as a and b

3 a, **b** two pairs of corresponding angles marked as c and d

c yes, 4 pairs

Triangles and quadrilaterals

- 4 a 20° (angles in a triangle sum to 180°)
 - **b** 120° (angles in a triangle sum to 180°)
- **5 a** 110°
 - **b** 130°
- **6 a** $a = 50^{\circ}$ (base angles are equal)
 - $b = 80^{\circ}$ (angles in a triangle sum to 180°)
 - **b** $c = 75^{\circ}$ (base angles are equal)
 - $d = 30^{\circ}$ (angles in a triangle sum to 180°)
 - **c** $e = 70^{\circ}$ (base angles are equal and angles in a triangle sum to 180°)
- **7** a h
 - **b** 30° (angles in a triangle sum to 180°)
 - c 150° (angles on a straight line sum to 180°)

8 $d = 80^{\circ}, e = 70^{\circ}, f = 30^{\circ}$

Interior and exterior angles

9

Polygon	Angle sum
square	360°
pentagon	540°
hexagon	720°
heptagon	900°
octagon	1080°

10 e.g. The angles do not sum to 360°.

11a 18 exterior angles

b 18 sides

5 Extend 1 a 40°

- **b** 80°
- **2** 290°

3

Angle	Value	Reason
AED	80°	Given
BCD	70°	Given
EAD	70°	Opposite angles in a rhombus are equal
ADE	30°	Angles in a triangle sum to 180°
EBC	110°	Adjacent angles in a rhombus sum to 180°
CDE	90°	Opposite angles in a rhombus are equal, and $ADE = 30^{\circ}$
BED	100°	Angles on a straight line sum to 180°
BEF	80°	Angles on a straight line sum to 180°
EBF	70°	Angles on a straight line sum to 180°
EFB	30°	Angles in a triangle sum to 180°

4 18 × 180 = 3240

5 130°

6 $a = 50^{\circ}$ (angles on a straight line sum to 180°, then corresponding angles)

 $b = 50^{\circ}$ (vertically opposite angles are equal)

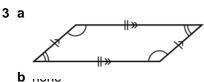
 $c = 40^{\circ}$ (angles in a right angle sum to 90°)

7 *a*, corresponding; 180, *a*; *a*, 180 – *a*, 180°

8 a 50°

- **b** 110°
- **c** 55°

- **9 a** $a = 120^{\circ}$ (interior angles of hexagon sum to 720°)
 - $b = 60^{\circ}$ (angle is bisected)
 - **b** $c = 135^{\circ}$ (interior angles of an octagon sum to 1080°)
 - $d = 45^{\circ}$ (angles of an isosceles trapezium are paired and sum to 360°)


 $e = 90^{\circ}$ (angles must sum to the interior angle)

- **c** $f = 144^{\circ}$ (interior angles of an decagon sum to 1440°)
 - g = 36° (angles of an isosceles trapezium are paired and sum to 360°)
 - $h = 108^{\circ}$ (angles must sum to the interior angle)
- **10a** 0.36°
 - **b** 179.64°
- **11a** 72°
 - **b** 60°
 - **c** 45°

12 258°

5 Unit test

- **1** $a = 90^{\circ}$ (angles on a straight line sum to 180°)
 - $b = 50^{\circ}$ (vertically opposite angles are equal)
- **2** 25°

- c order 2
- **4** 40°
- 5 kite
- **6** $f = 100^{\circ}$ (vertically opposite angles are equal)
 - $g = 60^{\circ}$ (angles in a triangle sum to 180°)
 - $h = 20^{\circ}$ (alternate angles are equal)
 - $i = 60^{\circ}$ (angles in a triangle sum to 180°)
- **7 a** 50°
 - **b** 720°
- 8 110° (angles on a straight line sum to 180°, then alternate angles)
- **9 a** 10°
 - **b** 170°
- 10 12 sides

Unit 6 Answers

6.1 Ordering decimals

- **1** 2.08, 2.39, 2.6
- **2 a** 0.001, 0.01, 0.1
- **b** 0.005, 0.05, 0.5

3 No: e.g. the 25 represents 25 hundredths and the 4 represents 4 tenths (40 hundredths).

- **4 a** 0.509, 0.515, 0.55
 - **b** 25.7635, 25.764, 25.8, 25.81
 - $\textbf{c} \ -0.884, \ -0.88, \ -0.85, \ -0.805, \ -0.8$
 - $\textbf{d} \ -1.991, \ -1.99, \ -1.97, \ -1.95, \ -1.907$
- **5** a 9.47, 9.4516, 9.446, 9.416, 9.4106
 - **b** 77.933, 77.9, 77.3933, 77.39, 77.339
 - **c** -5.02, -5.145, -5.2, -5.323
 - **d** -6.603, -6.63, -6.636, -6.666, -6.663
- 6 sheets C, D and E
- 7 a <
 - b >
 - **c** >
 - **d** <
 - **e** <
 - f >

6.2 Rounding decimals

- **1** a 4.7
 - **b** 8.4
 - **c** 83.0
 - **d** 56.8
- 2 18.8 runs
- **3** $8.65 \le x < 8.75$
- **4 a** 12.37
 - **b** 48.46
 - **c** 30.30
 - **d** 9.00
- **5 a** 0.14
- **b** 0.13
 - **c** 0.11
- 6 a e.g. She has removed all the decimal places
 - **b** 33.00
- **7** 40p
- **8** 3.873
- **9** 7.475, 7.484

10 a 5.650 ≤ *x* < 5.750 **b** 5.545 ≤ *x* < 5.555

6.3 Adding and subtracting decimals

- **1 a** 4.3
 - **b** 7.8
 - **c** 5.44
 - **d** 90.01
- **2 a** 6.38
 - **b** 10.88

3 e.g. The "3" in his calculation of the decimal places is in fact a '30' compared to his '25'.

- **4 a** 4.43
- **b** 24.53
- **5** £6.51
- 6 1.38 m
- **7 a** 6.89
 - **b** 1.52

1 a 25.2

8 7.7 million

6.4 Multiplying decimals

- **b** 33.2 **2** £15.75 **3 a** 45 **b** 4.5 **c** 4.5 **d** 0.45 **e** 45 **f** 0.0045 4 a i 5.1 ii 5.1 **b** i 8.7 ii 8.7 5 a i 63 ii 6.3 iii 0.63 **b** ÷ 100 6 a 55.2 **b** 131.2 **7** \$80 8 a 0.1316
 - **b** 131.6

c 13.16

d e.g. 0.047 × 28, 4.7 × 0.28 (or any other balanced multiples of ten or factorisation of the original)

6.5 Dividing decimals

1 a 21.4 **b** 15.1 **c** 12.4 **2 a** 80 **b** 370 **c** 4 **d** 22 **3 a** 20 **b** 250 **c** 6000 **d** 400 **4** a i 4 ii 4 **b**i 4 **ii** 4 c i 71 ii 71 **d** i 30.75 ii 30.75 **5 a** 2 **b** 0.3 **c** 2 **d** 4 6 a 6400, 64 000 **b** 2.5, 0.25, 0.025 **7** a 3.8 **b** 62 **c** 38 **d** 0.38 **e** 6.2

6.6 Fractions, decimals and percentages

1

Fraction	$\frac{1}{2}$	<u>1</u> 4	<u>1</u> 5	<u>1</u> 10	<u>3</u> 4	<u>4</u> 5	1 <u>9</u> 10	2 <u>1</u>
Decimal	0.5	0.25	0.2	0.1	0.75	0.8	1.9	2.5
Percentage	50%	25%	20%	10%	75%	80%	190%	250%

2 a 22%

```
b 3%
     c 404%
 3 a 0.17
     b 3.45
     c 0.038
 4 a 2.75 hours
     b 5.4 hours
5 a \frac{2}{5}
    b \frac{11}{25}
    c 1\frac{7}{20}
6 \frac{1}{6} = 0.1\dot{6}, \frac{5}{9} = 0.\dot{5}, \frac{5}{11} = 0.\dot{4}\dot{5}, \frac{7}{12} = 0.58\dot{3}, \frac{14}{27} = 0.\dot{5}\dot{18}
 7 a 0.8
     b 0.275
    c 0.0052
 8 6.75%, 0.608, 0.65, 66% \frac{2}{3}, \frac{7}{10}
 9 a \frac{17}{100}
    b \frac{1}{50}
    c \frac{17}{20}
10 a 67.5%
     b 68.8%
     c 77.4%
     d English
```

6.7 FINANCE: Working with percentages

- **1 a** £65.10
- **b** £49.50
- **2** £257.50
- 3 Cycle-on
- **4** £29.49
- **5 a** £125
 - **b** £625
 - **c** £625
 - d The answers are the same.
 - e i 1.25
 - ii 1.6
- 6 a 1.28
 - **b** 0.92

- **c** 0.801
- **7** £300

6 Strengthen

Ordering and rounding decimals

- **1 a** 8.3, 8.4, 9.2, 9.5
 - **b** 0.006, 0.055, 0.06, 0.55, 0.606
- **2 a** 0.75
 - **b** 0.77
 - **c** 0.75
 - **d** 0.75
- **3** £1.43

Add and subtract decimals

- **4** a 24.7
- **b** 84.9
- **5 a** 8.13
- **b** 13.15
- **6 a** 3.48
 - **b** 23.08
 - **c** 6.402

Multiply and divide decimals

- **7 a** 5.2
 - **b** 64.5
 - **c** 40.52
- **8** a 2.4
 - **b** 14
 - **c** 0.24
 - **d** 1.8
- **9 a** 0.25
 - **b** 0.028
 - **c** 0.004
- **10 a** 2.132
 - **b** 0.6784
- **11 a** 14.1
 - **b** 7.23
- **12 a** 40
 - **b** 30
 - **c** 700
 - **d** 20

Fractions decimals and percentages

13	ŀ		+									
	0		10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
	ŀ		+	+	+	+	+	+	+	+	+	-
	0		0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
	ŀ		+		+		+					
	0		<u>1</u> 10	<u>1</u> 5	<u>3</u> 10	<u>2</u> 5	$\frac{1}{2}$	<u>3</u> 5	<u>7</u> 10	$\frac{4}{5}$	<u>9</u> 10	1
14	1.	33										
15	а	0.4	4									
	b	4.4	4									
	С	£1	.40									
	d	£4	0.60)								
16	а	£7	0									
	b	52	2 m <i>l</i>									
17	60)										

6 Extend

- 1 a 110 puddings
 - **b** 27.3%
 - **c** 36.4%
 - d 27.27%, 36.36%
- **2 a** 8.25
 - **b** 8.34
- 3 any height more than 136.36 cm
- 4 0.042 m or 4.2 cm
- 5 a 37.41
 - **b** 3.741
 - **c** 3.741
 - **d** 8.7
 - **e** 43
 - **f** 8.7
- **6 a** 0.48
 - **b** 0.05
 - **c** 0.6
 - **d** 0.567
- **7 a** £108.33
 - **b** £194.99
 - **c** £1104.96
- 8 e.g. Carla has ignored the decimal points: -0.015
- **9 a** £30
 - **b** £1097.50
- **10** 5%

```
11 \frac{4}{90}, \frac{9}{200}, 4.52%, 5%, \frac{5}{99}, 0.5

12 a i >

ii <

b i <

ii >

c <

13 a any number with 3 d.p.

b 50.5 \leq x < 51.5

c 50.65 \leq x < 50.75

d 50.725 \leq x < 50.735
```

6 Unit test

- **1 a** 4.5
 - **b** 0.45
 - **c** 14.85
- 2 7.85 m
- 3

Fraction	<u>7</u> 10	<u>3</u> 4	<u>3</u> 5	1 <u>2</u> 5	$1\frac{2}{3}$
Decimal	0.7	0.75	0.6	1.4	1.Ġ
Percentage	70%	75%	60%	140%	166.6

4 a 11.514

- **b** 11 514
- **c** 30.3
- **5** 1.08, 1.083, 1.183, 1.38, 1.8
- **6** 12.58
- **7 a** 3.2
 - **b** 2.1
 - **c** 7
- **8** a £1360
- **b** £1410
- **9** 30
- **10 a** £412
- **b** £427
- **11** -8.23 < -8.32

Unit 7 Answers

7.1 Solving one-step equations

a 7
 b 17
 a 8
 b 6
 a 32
 b 14
 a 180 = 6t
 b 30°
 5 £12

7.2 Solving two-step equations

```
1 a x = 4

b p = 7 c d = 6

2 a 4

b 8

3 a 7

b 4

4 6

5 a 4n + 5 = 49

b 11

6 a 40^{\circ}, 40^{\circ}, 80^{\circ}

b 26^{\circ}, 78^{\circ}, 26^{\circ}, 78^{\circ}
```

7.3 More complex equations

1 a 3 **b** 2 **c** 4 **d** 2 **e** 10 **2 a** 10n - 6, 2n + 12 **b** 10n - 6 = 2n + 12 **c** 2.25 **3 a** 3 **b** 2 **c** 4 **4 a** $5x + 30 = 3x + 40, 55^{\circ}$ **b** $5y + 20 = 9y - 12, 60^{\circ}$

7.4 Trial and improvement

- **1 a** 8, -8 **b** 3 **c** 3, -3 **2 a** 37 (1
- **2 a** 3.7 (1 d.p.) **b** 7.5 (1 d.p.)
- **3** 15.2 cm (1 d.p.)
- **4 a** 4.7 (1 d.p.)
 - **b** 7.3 (1 d.p.)

7 Strengthen

Solving equations

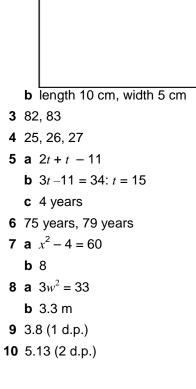
1 a 4 **b** 5 **c** 8 2 a 13 **b** 9 **c** 18 **3 a** 5 **b** -7 **c** 220 **4 a** 2 **b** 4 **c** 8 **5 a** 6 **b** 2 **c** -2 **6** 2 **7 a** 8 **b** 3

Writing equations

- **8 a** 3*n* + 30 = 180
 - **b** 50°
 - **c** 100°
- 9 22 cm

Trial and improvement

10 a 36, 49


0, 0		
x	x^2	Comment
6	36	too small
7	49	too big
6.5	42.25	too big
6.3	39.69	too small
6.4	40.96	too small

f 6.5 (1 d.p.)

7 Extend

1 octagon

2 a length = 2w

w

7 Unit test

a 7
 b 9
 c 32
 a 3
 b 20
 c 8
 3 20°, 50°, 110°
 4 42
 5 1
 6 13, 14, 15

7 6, -6 8 9.6 (1 d.p.)

Unit 8 Answers

8.1 STEM: Metric and imperial units

- **1 a** 50 000 m²
 - **b** 5.5 ha
 - **c** 1500 kg
 - **d** 20 t
- **2** 400 trees
- 3 about 5 g
- 4 a 16 km
 - **b** 0.4 km, 400 m
 - **c** 150 cm, 1.5 m
 - **d** 7.5 cm
 - **e** 1.8 kg, 1800 g
 - f 114 g, 0.114 kg
 - g 4.57 litres, 4571 ml
 - h 0.143 litres, 143 ml
 - i 13.5 litres
 - j 1.125 litres, 1125 ml
- 5 a between 8 and 16 km
 - **b** no
- 6 no

8.2 Writing ratios

- 1 14 buckets
- **2 a** no
 - **b** yes
 - **c** yes
 - **d** no
- **3 a** 2:1 **b** 100 m*l*
 - **c** 150 m*l*
- **4 a** 1:2
 - **b** 10:1
 - **c** 3:7
- 5 yes
- **6 a** 1:2:4
- **b** 2:4:3
- **c** 2:4:25
- **7 a** 50 : 7
 - **b** 24: 5
 - **c** 25: 1

- 8 a 6:7
 b 3:4
 c 10:3
 - 0 10 10

8.3 Sharing in a given ratio

1 a £8:£32
b £9:£12
2 Mr Jones
3 a £10:£20:£30
b £122:£244:£183
4 98 g
5 a i 120 g
ii 8 g
b 160 g
6 60 cm

8.4 Proportion

1 a 3:2 **b i** $\frac{3}{5}$ **ii** 60% **2 a** $\frac{11}{25}$, 44% **b** $\frac{11}{50}$, 22% **3** Michael Jordan **4** Gill's green; e.g. $\frac{3}{5}$ is greater than $\frac{4}{7}$ **5** 13:5:2 **6** 3:2

8.5 Proportional reasoning

- **1** 180 g
- **2** a £2.40
 - **b** £3.60
 - **c** £0.60 or 60p
 - **d** £3.00
- 3 No, he needs 5 more buckets of sand.
- 4 a 3 hours
 - b 24 hours
- 5 a i 50 minutes
 - ii 200 minutes
 - iii 60 minutes

b 50 mph

8.6 Using the unitary method

- 1 a i £1.20
 ii £4.80
 b 6 pineapples
 2 £14.30
- **3 a** £96
 - **b** £132
- 4 the 10-pack
- **5 a** 1:4
 - **b** 1:10
 - **c** 1:0.4
 - **d** 1: 0.4
- **6** 150 : 1
- 7 a Olaf 1 : 25, Helga 1 : 24
 - b Helga's drink

8 Strengthen

Ratio and measures

- 1 a 8 km
 - **b** 0.4 km
 - c 27 litres
 - **d** 120 cm
 - **e** 9 kg
- **2 a** 1:5
- **b** 1:11
- **3 a** 1:3
 - **b** 1:3
 - **c** 1:2
 - **d** 1:4
 - **e** 2:3
 - **f** 1:3
- **4 a** 1:15
 - **b** 8: 1
 - **c** 3: 10
- **5 a** £10 : £30
 - **b** £28 : £7
 - **c** £24 : £32
- 6 a £3:£6:£12
 - **b** £20 : £80 : £100
- **7** 20°, 60°, 100°

Direct and inverse proportion

8 a 10 students

- **b** $\frac{4}{10}$
- **c** $\frac{2}{5}$
- **d** 60%
- **9 a** 10%
 - **b** 60%
 - c Ben
- **10a** £5
 - **b** £25
 - **c** £55
- **11a** 24p
 - **b** 25p
 - c shop A
- 12a red 10 km : 1 litre, blue 12 km : 1 litre
 - b red 0.1 litres : 1 km, blue 0.083 litres : 1 km
 - c the blue car
- 13a 6 hours
 - b 4 hours
- 14a 8 hours
 - b 2 hours
 - c 40 hours

8 Extend

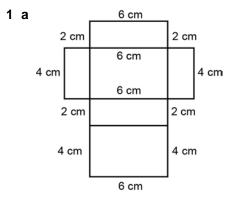
- **1** 5:6:8
- **2 a** 1363 g
 - **b** 180 cm, 1.8 m
 - **c** 6.4 km, 6400 m
 - d 40.5 litres, 40 500 ml
 - **e** 2.86 litres, 2860 m*l*
 - f 75 cm, 0.75 m
- **3** $\frac{3}{5}$, 60%
- 4 a team A 30%, team B 33.3%
- b team B
- **5 a** 9:1
- **b** 111.1 g
- **6 a** 6:3:1
 - **b** 48 kg, 24 kg, 8 kg
- 7 8 carrots
- 8 a 48.3p, 47.5p (1 d.p.)
 - **b** the 10-pack

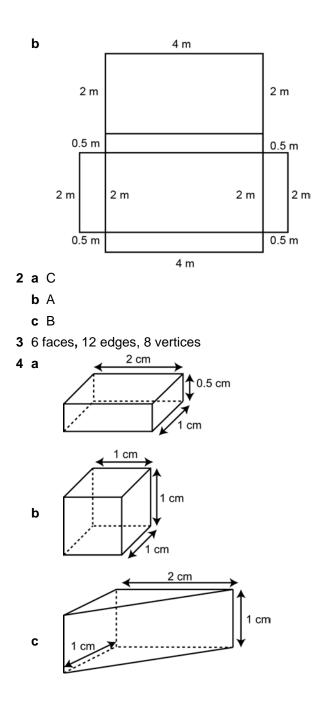
9 3:1:2
10 3:1
11a 3:5:12
b £36
12car A 1:800, car B 1:124, car C 1:89.39
13a 120 hours
b 12 artists

8 Unit test

```
1 3:4
2 £12 : £18
3 a 3:4:6
  b 12: 5
  c 5:1
4 a 3636 g
   b 32 km
   c 60 cm
5 a \frac{1}{5}
   b 20%
6 £7.50
7 £40 : £80 : £200
8 offer 2
9 2:3
10a 1:5
   b 1:4
11a 9:1
   b 0.2 : 1
12a i 16 hours
     ii 4 hours
   b 32 students
```

Unit 9 Answers


9.1 Triangles, parallelograms and trapeziums


- **1 a** 50 cm²
- **b** 6.5 m²
- **2** 4 mm
- **3 a** 20 cm²
- **b** 36 cm²
 - $c 0.8 m^2$
- 4 3 cm
- **5** 540 cm²
- **6 a** 80 cm²
 - **b** 39 mm²

9.2 Perimeter and area of compound shapes

- **1** a 5 cm, 10 cm
 - **b** 12 m, 12 m
- 2 80 cm
- **3 a** 38 m²
- **b** 18 m²
- **4 a** 140 cm²
- **b** 150 m²
- **5** 1500 mm²

9.3 Properties of 3D solids

9.4 Surface area

- **1** 600 cm²
- **2 a** 150 m²
 - **b** 24 mm²
 - $\mathbf{c} \ 6 \ \mathrm{cm}^2$
- **3 a** 72 cm²
 - **b** 3400 mm²
- **4 a** 16 cm²
 - **b** 4 cm
- **5** Yes. Surface area of outside of box = 65 m^2

9.5 Volume

- **1** 125 cm³
- **2 a** 16 cm²
 - **b** 4 cm
 - \mathbf{c} 64 cm³
- **3 a** 48 cm³
 - **b** 30 m³
 - \mathbf{c} 54 cm³
- **4 a** 250 cm³
 - **b** 5 m*l*
 - c 5.125 litres
- **5 a** 15 000 cm³
 - b 15 litres
 - **c** e.g. It depends on the shape of the bottles. Round bottles won't pack together closely enough to fit.
- **6** 750 cm^3

9.6 STEM: Measures of area and volume

- **1** a cm^2
 - $\mathbf{b} \ \mathrm{km}^2$
 - $\mathbf{c} \ m^2$
- 2 60 ha
- **3** a 10 mm, 10 mm
 - **b** i 1 cm^2
 - **ii** 100 mm²
 - c i multiply, 100
 - ii divide, 100
- **4 a** 800 mm²
 - **b** 5.75 m²
 - **c** 9.5 cm^2
 - **d** 8 500 000 m^2
 - **e** 2000 cm²
 - **f** 0.0045 km²
- 5 120 000 tiles
- **6 a** 12 000 mm³
 - **b** 0.066 cm^3
 - **c** 1 750 000 cm³
 - **d** 0.125 m³
- 7 9 containers

9 Strengthen

Area and perimeter of 2D shapes

- **1** 16 cm², 8 cm²
- 2 a i 20 cm
 - ii 5 cm
 - \mathbf{b} 50 cm²
- 3 a 32 cm
- **b** 43 cm²
- **4** 24 cm²
- **5** 80 cm²

Working with 3D solids

6 6 faces, 12 edges, 8 vertices

7

-	
Face	Area
Тор	10 cm ²
Bottom	10 cm ²
Front	15 cm ²
Back	15 cm ²
Left	6 cm ²
Right	6 cm ²
Total surface area	62 cm ²

- **8 a** 80 cm³
 - **b** 50 cm³

c 8 cm³

Measures of area and volume

- **9 a** 16 cm²
 - **b** 1600 mm²
- **10 a** 36 m²
 - **b** 360 000 cm²
- **11 a i** 8000 mm²
 - ii 22.5 cm³
 - **b** i 30 000 cm³
 - **ii** 6.5 m³

9 Extend

- **1 a** 50 cm²
- **b** 50 cm²
- 2 38 cm
- **3 a** 1.6 m

b 7.5 m³

4 a i any three numbers that multiply to 4500, e.g. 9 m, 50 m, 10 m

 $ii\,$ e.g. a set of three numbers that are each 3 times the numbers in part $i\,$

b 121 500 ft³

- **5 a** 12 m²
 - **b** 68 cm²
 - **c** 50 cm²
- **6 a** 8 cm³
 - **b** 28 cm²
 - c by stacking them with the 4 cm by 2 cm faces together
- **7 a** 1550 cm³
 - **b** 108 cm³
- 8 a 6 cm
 - **b** 6 cm
 - **c** 6 cm
 - **d** 2 cm

9 5; 2, 3; 12, 5, 30 cm²; 12, 5, 30 cm²; 10, 5, 50 cm² 130 cm²; 120 cm²; 360 cm²

9 Unit test

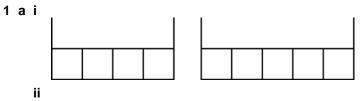
- **1 a** 27 cm
 - **b** 44 cm^2
- **2 a i** 1000 cm³
 - ii 600 cm²
 - **b** i 20 cm³
 - ii 58 cm²

```
3 a 6 cm<sup>2</sup>
```

- **b** 60 cm²
- **c** 120 cm²
- **4 a** 0.04 m²
 - **b** 400 cm²
 - **c** 40 000 mm²
 - **d** 25 cm
- **5** 200 m³
- **6 a** 7 200 000 cm³
 - **b** 9.9 cm³
 - **c** 630 cm³

Unit 10 Answers

10.1 Sequences


```
1 a 9
```

- **b** ascending
- c infinite
- **2 a** 4, add 2
 - **b** 3, add 5
 - c 20, subtract 3
 - **d** 12, add 0.5
- 3 a yes
 - **b** no
 - **c** no
 - d yes
- **4 a** 3, 5, 7, 9, 11
 - **b** 0, 10, 20, 30, 40
 - **c** 20, 10, 0, -10, -20
 - $\textbf{d} \ 8,\, 5,\, 2,\, -1,\, -4$
- 5 a 1st term 100, common difference 5
 - **b** 1st term 7, common difference 3
 - c 1st term 50, common difference -20
 - d 1st term 20, common difference -9
- **6 a** 1, 3, 5, 7, 9, 11, 13
 - **b** day 16
- **7 a** 40
 - **b** 200
 - **c** 400

10.2 The nth term

1 a 4, 8, 12, 16, 20
b 80
2 10, 20, 30, 40, 50
3 a 6, 7, 8, 9
b 25
c 1st term 6, common difference 1
4 a n + 4
b n + 11
5 a 7, 12, 17, 22, 27
b 0, 2, 4, 6, 8
6 a 2 n + 8
b 2n + 4
c 10 n - 9

10.3 Pattern sequences

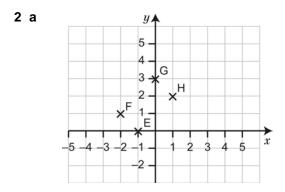
Term number	1	2	3	4	5
Number of lines	6	9	12	15	18

iii 1st term 6, rule 'add 3'

bi

٠	٠	٠	٠	•	•	•	•	•	٠	٠	٠	•
•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•
						•	•	•	•	•	•	•

ii

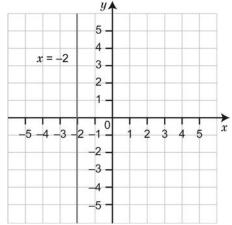

Term number	1	2	3	4	5
Number of dots	3	8	15	24	35

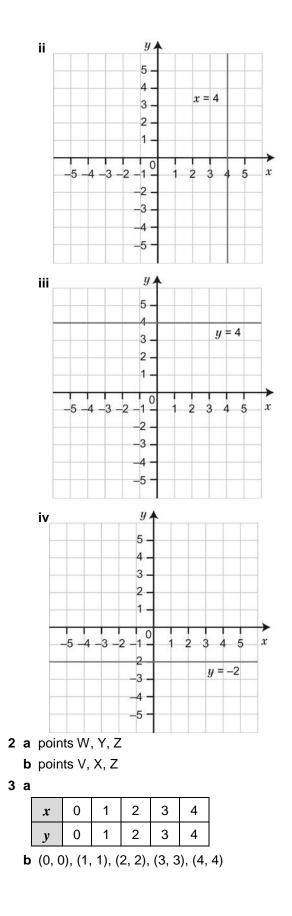
iii 1st term 3, rule 'add the next odd number each time'

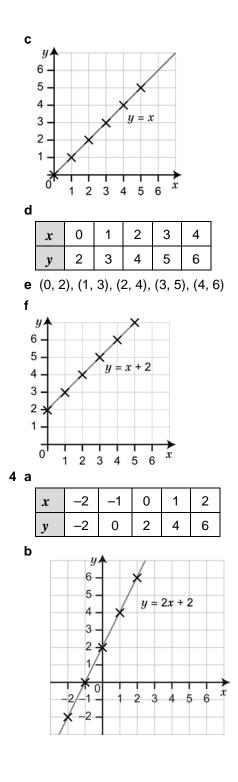
- **2** 5, 10, 20, 40, 80
- 3 a 1st term 1, rule x2
 - b 1st term 32, rule ÷2
 - c 1st term 81, rule ÷3
 - d 1st term 0.02, rule 'x10
- 4 a geometric
 - **b** arithmetic
 - c geometric
- 5 a 62.5, 31.25
 - **b** 256, 1024
 - **c** 0.5, 0.05
 - **d** 250, 1250
- 6 a 11, 14, 19
 - **b** 10, 40, 90
 - $\bm{c} \ 0.1, \, 0.4, \, 0.9$

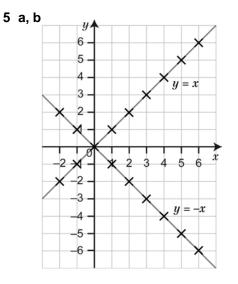
10.4 Coordinates and line segments

- **1 a** 8 units
 - **b** A (3, 4), B (-5, 4), C (-5, -2), D (5, -2)




- b rectangle
- **3 a** (3.5, 5)
 - b (-1, 3)
 - **c** (5, 2.5)
 - **d** (2.5, −2)
- **4** a (-1, 4)
 - **b** (4, 2)
 - **c** (-5, 1.5)
- **5** a (-3, -2)
 - **b** (-0.5, -1.5)
 - **c** (2, 0.5)
 - **d** (2.5, 2.5)


10.5 Graphs


- **1 a** any four of (-5, -4), (-5, -3), (-5, -2), (-5, -1), (-5, 0), (-5, 1), (-5, 2), (-5, 3), (-5, 4) **b** The *x*-coordinates are all -5.
 - **c** x = -5

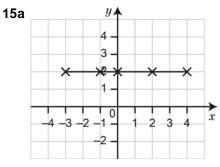
10 Strengthen

Sequences

- **1 a** +3
 - **b** 14, 17
- **2 a i** 9, 5, 1
 - ii 32, 37, 42
 - iii 44, 53, 62
 - b i descendingii ascendingiii ascending
- ^{3 a} 0 0 0 0 0 0 0 0 0 0 0 0
 - b

Pattern number	1	2	3	4	5
Number of dots	3	6	9	12	15

c 18 dots


4

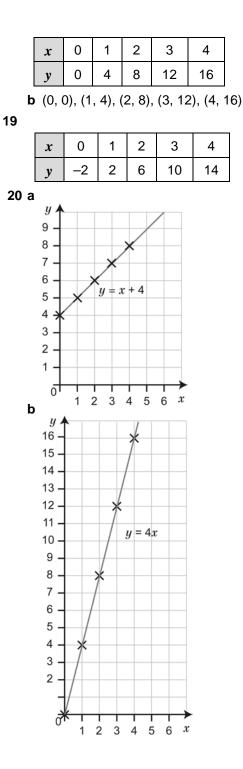
Term number	1	2	3	4	5
Term	2	6	10	14	18

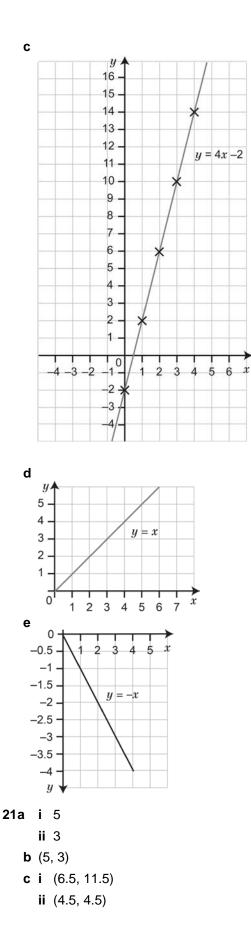
- **5 a** 11, 15, 19
 - **b** 12, 9, 6
- **6 a i** 4n
 - **ii** 40
 - **b** i 10*n*
 - **ii** 100
 - **c** i 7*n*
 - **ii** 70
- **7 a** 5

b *n* + 5 **8** a *n* + 12 **b** *n* – 2 **9** 12, 13, 14, 15, 16 **10** 7, 9, 11, 13, 15 **11 a** 2n **b** 3 **c** 2*n* + 3 **12**3*n* + 2 13 a no b yes **c** no d yes 14 a i 81, 243 ii x3 **b** i 1250, 6250 ii ×5 c i 24,29 **ii** +5 d i 405, 1215 ii x3 e i 12, 10 **ii** –2

Graphs

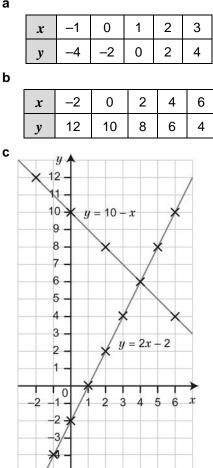
b The *y*-coordinates are all 2.


c y = 2, x-axis


16 a any four coordinate pairs with *y* = −2, e.g. (5, −2), (4, −2), (3, −2), (2, −2) **b** any four coordinate pairs with *x* = 10, e.g. (10, 5), (10, 4), (10, 3), (10, 1)

17 a

	x	0	1	2	3	4	5	
	у	4	5	6	7	8	9	
b	(0, 4	l), (1,	5), (2, 6),	(3, 7), (4,	8), (5, 9)



10 Extend

2 a

- **d** (4, 6)
- 3 a 11 tables

b

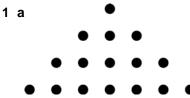
Number of tables	1	2	3	4	5
Number of seats	5	8	11	14	17

c 32 people

d 3 seats

- e No, because each additional table adds 4 seats and removes 1.
- **f** 3*n* + 2
- g 10 tables
- **4** a *y* = 5
 - **b** x = -4
 - **c** y = -x
 - **d** No, because A is at (-4, 5) not (-4, 4).
- 5 a e.g. (0, -3)
- **b** i (2.5, 1)
 - ii (4.5, 3)

- 6 a i Yes, because 7 2 = 5, so n = 1.
 ii No, because no integer value of n produces 55.
 iii Yes, as in part i, but n = 134.
 iv No, because n would be negative.
 b 32
 - **c** 402
- 7 a infinite
 - **b** *n* = 1, -8.5
- **8 a** 38, 51
 - **b** 1, 2
 - **c** 5, 7
 - **d** -3, 5
- **9 a i** 9, 13
 - **ii** 4*n* 3
 - **b** i 25, 125
 - ii 1st term 1, rule ×5
- **10a** 243


b

1st term	2nd term	3rd term	4th term	5th term
3	3 ²	3 ³	3 ⁴	3 ⁵

c 59 049

d 3^{*n*}

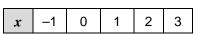
10 Unit test

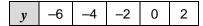
b

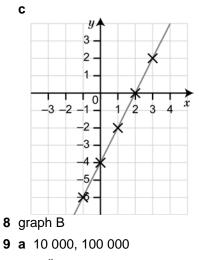
Term number	1	3	3	4	5	6
Number of dots	1	4	9	16	25	26

2 32

3 5, 11, 17, 22


4 Geometric, because there is no common difference and each term is double the previous one.


5 a 11*n*


b 4*n* + 7

- 6 AB (2, 2), CD (-2, -1), EF (2, -4)
- **7 a** -2, 0, 2

```
b
```


b 10^{*n*}