Exercise 1.1

1 48

2 a

b 6

3 a Multiples of 9: 9, 18, 27, 36, 45, 54, 63, 72 Multiples of 12: 12, 24, 36, 48, 60, 72, 84, 96 **b** 36

- **b** 30
- **c** 21
- **d** 33
- **9** Possible answers are: 36 × 2 = 72, 36 × 3 = 108, or 108 and 36 × 4 = 144, or 36 and 36 × 5 = 180 etc.

Exercise 1.2

- **1** a $\frac{1}{5}$ **b** 3 **c** $\frac{5}{3}$ **2** a 64 **b** 125 **c** 81 **d** 32 **3 a** 64 **b** 243 **c** 10000000 **d** 625 4 $2^2 \times 2^3 = 2^{2+3} = 2^5$ **5** a 3⁶ **b** 4⁴ **c** 5⁶ **d** 7⁶ **e** 4¹⁴ **f** 3¹⁰ **g** 6¹³ 6 a Students' own answers: any three numbers that are different and add to 15 e.g. 2, 3 and 10 b Students' own answers: any two numbers that are the same and one that is different that add to 15 e.g. 2, 2 and 11 **c** 5
- **7 a i** 4²
 - **ii** 4²
 - **b** 2³
 - **c** 5
- **8 a** 6⁶
 - **b** 5⁴
 - **c** 9
 - **d** 2⁵
 - **e** 4⁶
 - **f** 12⁴

9 a Students' own answers: any two powers of 3 where the difference in the powers is 2 and they are both greater than 20 e.g. $3^{25} \div 3^{23}$ **b** Students' own answers: any two powers of 3 where the difference in the powers is 2 and they are both smaller than 20 e.g. $3^{19} \div 3^{17}$ **c** $3^4 \div 3^2$ **10** 2⁷ or 128 11a 2⁸ **b** 5⁴ **c** 3⁶ **d** 6⁸ **12a** 4¹² **b** 7¹⁰ **c** 3¹⁸ **d** 8³⁵ 13a i 28 ii 38 **iii** p⁸ **b** $p^a \times p^b = p^{a+b}$ **c** i 2² ii 3² iii p^2 **d** $p^a \div p^b = p^{a-b}$ **e** $i (2^5)^3 = 2^{15} ii (3^5)^3 = 3^{15}$ **iii** $(p^5)^3 = p^{15}$ **f** $(p^a)^b = p^{a \times b}$ 14a i All answers are 1 ii All answers are 1 **b** i $\frac{9^5}{9^3} = 9^2, \frac{9^5}{9^4} = 9^1, \frac{9^5}{9^5} = 9^0$ ii 9⁰ = 1 iii Any number to the power of zero = 1 **15a** 4⁷ **b** 7⁴ **c** 5⁴ 16a 2¹² **b** 4⁶ **c** 3⁵

Exercise 1.3

1 $10^2 = 100, 10^3 = 1000, 10^4 = 10\ 000, 10^5 = 100\ 000$

- **2 a** 45 **b** 2360 **c** 84.3 **d** 14 500
 - e 27 f 4.685 g 0.35 h 0.045

3

10 000	1000	100	10	1	$\frac{1}{10}$	$\frac{1}{100}$	$\frac{1}{1000}$	$\frac{1}{10000}$	
 10 ⁴	10 ³	10 ²	10	10 ⁰	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁴	

4 a

	10 ⁴	10 ³	10 ²	10	10 ⁰	10 ⁻¹	10-2	10 ⁻³	10 ⁻⁴	
		kilo				deci	centi	milli		

b 1000

c 1 000 000

 $d \ 1 \ 000 \ 000 \ 000$

- **5 a** 4000
 - **b** 2400000
 - **c** 12 500 000 000
- 6 a 1000000
 - **b** 1000
 - **c** 1000
 - **d** 1000

7 a

Name of planet	Diameter of planet (km)	Average distance from Sun (km)
Mercury	4 900	57 900 000
Earth	12800	150 000 000
Saturn	120 000	1 427 000 000

b Saturn

c Mercury

- 8 110 tonnes
- 9 a Write all the dimensions in metres

Name of organism	Length (m)	Width (m)
dust mite	0.00 042	0.00 025
bacteria	0.000 002	0.0 000 005
virus	0.0 000 003	0.000 000 015

b dust mite

c virus

10 0.0 000 001 mm

```
Exercise 14
1 a 5<sup>6</sup>
  b 8<sup>2</sup>
  c 7<sup>3</sup>
2 a 16
  b 49
  c 9
  d 100
3 Students' own estimations to
  a 97 ÷ 4 e.g. 100 ÷ 4 = 25
  b 12.3 × 10.2 e.g. 12 × 10 = 120
  c 18.6 ÷ 5 e.g. 20 ÷ 5 = 4
4 18
5 a 40
  b 36
  c 1250
  d 360
6 112
7 Rasheed is correct. Sophie has squared -5 to get -25 instead of +25.
8 14 + 4<sup>2</sup> and 14 + (-4)<sup>2</sup>
  14 - 4^2 and 14 - (-4)^2
  25 - 2^2 - 6^2 and 25 - 2^2 - (-6)^2
  25 - (-2)^2 + 6^2 and 25 - 2^2 + (-6)^2
9 a 12
  b 48
  c 10
  d 48
10a 47.37
  b 0.007
  c 600 000
11a 40 × 500 = 20 000
  b 6000 × 30 = 180 000
  c 900 ÷ 30 = 30
  d 50 000 ÷ 200 = 250
12a 3
  b 160
  c \frac{1}{2}
  d 1800
```

13 43.8 m³

14a Students' own answers: any two numbers such that $665 \le$ number < 675

b 674

c 665

15a

Planet	Mercury	Venus	Earth	Mars	Uranus
Diameter (km)	5 000	10 000	10 000	7 000	50 000

b 45 000 km

16 40 000 × £30 = £1 200 000

1 Check up

Prime factors

- **1** Students own version of factor tree and $72 = 2^3 \times 3^2$
- **2** $300 = 2^2 \times 3 \times 5^2$
- **3 a** 45
 - **b** 160

Laws of indices

4 a 3⁷ **b** 5³ **c** 6¹⁸ **d** 2⁴ **f** 3⁸ **e** 5⁷ **g** 4⁰ **5** 24 6 a 25 **b** 5 **c** 1 **7** a 6⁶ **b** 2³ **c** 3⁶ **8** A $(2 \times 5)^2$ and C $2^2 \times 5^2$ – both equal 100 **9** 6 **10** $a^x \times a^y = a^{x+y}$ $a^x \div a^y = a^{x-y}$

Powers of 10

 $(a^x)^y = a^{xy}$

11a

Prefix	Power of 10	Number
giga	10 ⁹	1 000 000 000
mega	10 ⁶	1 000 000
kilo	10 ³	1000
deci	10 ⁻¹	0.1
centi	10-2	0.01
milli	10 ⁻³	0.001
micro	10 ⁻⁶	0.000 001

 b 0.005 kilograms and 5 grams 5000 kilograms and 5 megagrams 50 000 milligrams and 500 decigrams
 12 2.4 ÷ 10⁷, 8.9 ÷ 10⁵, 4.6 × 10⁴, 2.1 × 10⁵

Significant figures

13a 129.3
b 0.0004
c 700 000
14a 40 × 600 = 24 000
b 8000 ÷ 20 = 400

15 £10 × 30 000 = £300 000

1 Strengthen

Prime factors

Laws of indices

1

4 ⁰	4 ¹	4 ²	4 ³	4 ⁴
1	4	16	64	256

- **2 a** 3⁷
 - **b** 4⁴
 - **c** 9⁹
 - **d** 5¹¹
- **3 a** 4³
 - **b** 3⁴
 - **c** 7²
 - **d** 9⁸

- **4** a 4⁶
 - **b** 3¹⁰
 - **c** 6⁸
- **d** 8³⁰
- **5** $2^4 \times 2^3 = 2^{4+3}$ $2^x \times 2^y = 2^{x+y}$ $n^x \times n^y = n^{x+y}$ $2^4 \div 2^3 = 2^{4-3}$ $2^x \div 2^y = 2^{x-y}$ $n^x \div n^y = n^{x-y}$ $(2^4)^3 = 2^{4\times 3}$ $(2^x)^y = 2^{xy}$ $(n^x)^y = n^{xy}$

6

2 ⁰	2 ¹	2 ²	2 ³	24	25	2 ⁶	27
1	2	4	8	16	32	64	128

- 7 a i 23 or 8
 - ii 24
 - **b** i 5² or 25
 - ii 100
- **8 a i** 9
 - ii 49
 - **iii** 49
 - **bi** 16
 - ii 36
 - iii 4
- **9 a** 8⁷
 - **b** 3⁴
 - **c** 6
 - **d** 10⁵
- **10a** 2¹¹
 - **b** 3⁹
 - **c** 3⁵

Powers of 10

- **1 a** kilo (k) = 10³ = 1000
 - **b** mega (M) = $10^6 = 1\ 000\ 000$
 - **c** giga (G) = $10^9 = 1\ 000\ 000\ 000$
- **2 a** 6 500 000 000 km
 - **b** 14 000 000 nm
 - **c** 0.05 mm
 - **d** 2.2 Mm
 - e 600 000 mm
- **3 a** 5000 J
 - **b** 21 000 W
 - c 270 000 000 ml
 - **d** 0.72 mg
- 4 a 6100 kHz
 - **b** 0.69 µm

Significant figures

- 1 a 2 tens
 - b 7 hundredths
 - c 50 thousand
 - d 8 tenths
- **2 a** 300
 - **b** 40
 - **c** 2000
 - **d** 400 000
 - **e** 0.04
 - **f** 0.0 006
- **3 a** 64 000
 - **b** 63.6
 - **c** 0.83
 - **d** 0.00 733
- **4 a** 18 000
 - **b** 28 000
 - **c** 1 600 000
 - **d** 50
 - **e** 40
 - **f** 50
- **5** £600 000

Enrichment

- 1 $7^5 \times 7^{10} = 7^{15}$ $7^9 \div 7^8 = 7^1$ $(7^2)^3 = 7^6$ 2 a 672 seconds b 2:11:12 pm c i 8 ii 7
 - d i 3200 m or 3.2 km ii 2800 m or 2.8 km

1 Extend

- **c** 13 860
- 6

Prefix	Letter	Power	Number
tera	Т	10 ¹²	1 000 000 000 000
giga	G	10 ⁹	1 000 000 000
mega	М	10 ⁶	1 000 000
kilo	k	10 ³	1000
deci	d	10 ⁻¹	0.1

Prefix	Letter	Power	Number
centi	С	10 ⁻²	0.01
milli	m	10 ⁻³	0.001
micro	μ	10 ⁻⁶	0.000 001
nano	n	10 ⁻⁹	0.000 000 001
pico	р	10 ⁻¹²	0.000 000 000 001

19 a, b

Country	Population	Area (km²)	Population density
China	1 360 000 000	9 570 000	142
Hong Kong	7 110 000	1 050	6771
Iceland	317 000	100 000	3
USA	319 000 000	9 160 000	35
Vietnam	93 400 000	310 000	301

c i Hong Kong

ii Iceland

20a i 2975000

ii 20%

- **b** i 2995897.5
 - ii 18.8%
- c Students' own answer

21a
$$\frac{5}{6}$$
 b $31\frac{1}{2}$ **c** $\frac{25}{288}$

d
$$10\frac{2}{3}$$

b

22a

		213 >	< 3 ¹²			
	28 >	< 37	25 >	< 35		
27 >	< 35	2 ×	(3 ²	24 >	< 33	

		420 >	< 5 ¹⁵		
	48 >	< 5 ⁶	4 ¹² :	$\times 5^9$	
$4^{5} \times 5$		4 ³ >	< 5 ⁵	4 ⁹ >	< 54

c Students' own answers

23

a $x^{a} \times y^{b} \times x^{c} \times y^{d} = x^{a+c} \times y^{b+d}$

b $x^{a} \times y^{b} \div x^{c} \times y^{d} = x^{a-c} \times y^{b-d}$

```
1 Unit test
```

```
1 a 76 = 2^2 \times 19
   b 648 = 2^3 \times 3^4
2 a 8<sup>9</sup>
   b 3<sup>12</sup>
   c 9<sup>16</sup>
   d 7<sup>6</sup>
   e 12<sup>5</sup>
   f 6<sup>18</sup>
3 a (-3)<sup>7</sup>
   b (-8)<sup>10</sup>
4 a i 144 = 2^4 \times 3^2
      ii 180 = 2^2 \times 3^2 \times 5
   b 36
5 210 seconds
6 a 3
   b 37 800
7 250
8 a 1000 000 000 and 10<sup>9</sup> and G and giga
       1 000 000 and 10<sup>6</sup> and M and mega
      1000 and 10<sup>3</sup> and k and kilo
      10<sup>-3</sup> and 0.001 and milli and m
      10^{-6} and 0.000 001 and micro and \mu
      10^{-9} and 0.000 000 001 and nano and n
   b i 90000000 J
      ii 13000 W
      iii 8 500 000 s
9 a 5<sup>5</sup> × 2<sup>7</sup>
   b 3<sup>6</sup> × 5<sup>9</sup>
10a 49
   b 87
11a 12
   b 18
12a 27 700
   b 7.982
   c 0.007
13a 54 000
   b 50
14 (2000 + 1000 + 400 + 2000 + 800) \div 5 = \pounds1240
```

15a 15^5 **b** 4^2 **c** 5^6 **d** 2^2 **16 B** 3×4^2 **17a** 7 **b** $\frac{2}{75}$

18 A and F, B and E, C and D

Exercise 2.1

1 a 8*x*

- **b** 10y + 11z
- **c** 2*t* + 3*g*
- **d** 9*j* 7*h*
- **e** $2x^3 + x^2$

2

		19 <i>x</i> ²	+ 6x ³				
	10 <i>x</i> ²	$+ 3x^{3}$	9x ² -	+ 3 <i>x</i> ³			
4 <i>x</i>	$x^{2} + 2x^{3}$	$6x^{2}$	+ x ³	$3x^2$ -	+ 2x ³		
а	5x = 35						
b	− 2 <i>a</i> − 6						
а	10 <i>a</i> ²						
b	24m ³						
а	3 <i>x</i>						
b	x^3 and 2	$27x^{3}$					
С	28 <i>x</i> ³						
d	28 000	cm ³					
а	$10x^2 + 1^2$	1 <i>y</i> ²					
b	6 <i>a</i> ³ + 4 <i>k</i>	\mathbf{p}^2					
а	and b						
	$5q + 2p^2$	$r^{2} - 3q^{2}$	+ 6p ²	+ 4 <i>q</i> +	$10q^2 =$	9 <i>q</i> + 8	$p^2 + 7q^2$
	$5q + 2p^2$	$r^{2} - 3q^{2}$	+ 12q ²	$^{2} - 3q$ -	$-5p^2 =$	2q – 3	$p^2 + 9q^2$
	$6p^2 + 4q$	r + 10q	² + 12	$q^2 - 3q$	$-5p^{2}$	= q + p	$^{2} + 22q^{2}$
С	$6q + 3p^2$	² + 19q	2				
a	1x + 1						
D	2m - 23						
с С	12 12 m						
u o	12 - x						
e f	6x + 0						
י a	0x - 17 8(x + 3)	or 8 ₂ -	⊦ 24				
b	5(x-2)	or $5x =$	- 10				
c	3x + 34	5. 0/					
	4x ababcdaba cabcdefabc	$10x^{2}$ $4x^{2} + 2x^{3}$ a $5x = 35$ b $-2a - 6$ a $10a^{2}$ b $24m^{3}$ a $3x$ b $24m^{3}$ a $3x$ b x^{3} and 2 c $28x^{3}$ d $28\ 0000$ a $10x^{2} + 17$ b $6a^{3} + 4k$ a and b $5q + 2p^{2}$ $6p^{2} + 4q$ c $6q + 3p^{2}$ $6p^{2} + 4q$ b $2m - 23$ c 12 c $3x + 3$	$19x^{2}$ $10x^{2} + 3x^{3}$ $4x^{2} + 2x^{3}$ $6x^{2}$ $a 5x = 35$ $b -2a - 6$ $a 10a^{2}$ $b 24m^{3}$ $a 3x$ $b x^{3} and 27x^{3}$ $c 28x^{3}$ $d 28 000 cm^{3}$ $a 10x^{2} + 11y^{2}$ $b 6a^{3} + 4b^{2}$ $a and b$ $5q + 2p^{2} - 3q^{2}$ $5q + 2p^{2} - 3q^{2}$ $6p^{2} + 4q + 10q$ $c 6q + 3p^{2} + 19q$ $a 7x + 7$ $b 2m - 23$ $c 12$ $d 12 - x$ $e 8x + 6$ $f 6x - 17$ $a 8(x + 3) or 8x - 5$ $b 5(x - 2) or 5x - 5$ $c 3x + 34$	$19x^{2} + 6x^{3}$ $10x^{2} + 3x^{3}$ $9x^{2} - 3x^{3}$ $4x^{2} + 2x^{3}$ $6x^{2} + x^{3}$ $a 5x = 35$ $b -2a - 6$ $a 10a^{2}$ $b 24m^{3}$ $a 3x$ $b x^{3} and 27x^{3}$ $c 28x^{3}$ $d 28 000 cm^{3}$ $a 10x^{2} + 11y^{2}$ $b 6a^{3} + 4b^{2}$ $a and b$ $5q + 2p^{2} - 3q^{2} + 6p^{2} + 5q^{2} + 2p^{2} - 3q^{2} + 12q^{2}$ $6p^{2} + 4q + 10q^{2} + 12q^{2}$ $6p^{2} + 4q + 10q^{2} + 12q^{2}$ $6q + 3p^{2} + 19q^{2}$ $a 7x + 7$ $b 2m - 23$ $c 12$ $d 12 - x$ $e 8x + 6$ $f 6x - 17$ $a 8(x + 3) or 8x + 24$ $b 5(x - 2) or 5x - 10$ $c 3x + 34$	$19x^{2} + 6x^{3}$ $10x^{2} + 3x^{3}$ $9x^{2} + 3x^{3}$ $4x^{2} + 2x^{3}$ $6x^{2} + x^{3}$ $3x^{2} - 3x^{3}$ $b -2a - 6$ $a 10a^{2}$ $b 24m^{3}$ $a 3x$ $b x^{3} and 27x^{3}$ $c 28x^{3}$ $d 28 000 cm^{3}$ $a 10x^{2} + 11y^{2}$ $b 6a^{3} + 4b^{2}$ $a and b$ $5q + 2p^{2} - 3q^{2} + 6p^{2} + 4q + 5q + 2p^{2} - 3q^{2} + 12q^{2} - 3q - 6p^{2} + 4q + 10q^{2} + 12q^{2} - 3q$ $c 6q + 3p^{2} + 19q^{2}$ $a 7x + 7$ $b 2m - 23$ $c 12$ $d 12 - x$ $e 8x + 6$ $f 6x - 17$ $a 8(x + 3) or 8x + 24$ $b 5(x - 2) or 5x - 10$ $c 3x + 34$	$19x^{2} + 6x^{3}$ $10x^{2} + 3x^{3}$ $9x^{2} + 3x^{3}$ $4x^{2} + 2x^{3}$ $6x^{2} + x^{3}$ $3x^{2} + 2x^{3}$ $a 5x = 35$ $b -2a - 6$ $a 10a^{2}$ $b 24m^{3}$ $a 3x$ $b x^{3} and 27x^{3}$ $c 28x^{3}$ $d 28 000 cm^{3}$ $a 10x^{2} + 11y^{2}$ $b 6a^{3} + 4b^{2}$ $a and b$ $5q + 2p^{2} - 3q^{2} + 6p^{2} + 4q + 10q^{2} =$ $5q + 2p^{2} - 3q^{2} + 12q^{2} - 3q - 5p^{2} =$ $6p^{2} + 4q + 10q^{2} + 12q^{2} - 3q - 5p^{2}$ $c 6q + 3p^{2} + 19q^{2}$ $a 7x + 7$ $b 2m - 23$ $c 12$ $d 12 - x$ $e 8x + 6$ $f 6x - 17$ $a 8(x + 3) or 8x + 24$ $b 5(x - 2) or 5x - 10$ $c 3x + 34$	$19x^{2} + 6x^{3}$ $10x^{2} + 3x^{3} 9x^{2} + 3x^{3}$ $4x^{2} + 2x^{3} 6x^{2} + x^{3} 3x^{2} + 2x^{3}$ a $5x = 35$ b $-2a - 6$ a $10a^{2}$ b $24m^{3}$ a $3x$ b x^{3} and $27x^{3}$ c $28x^{3}$ d $28 \ 000 \ cm^{3}$ a $10x^{2} + 11y^{2}$ b $6a^{3} + 4b^{2}$ a and b $5q + 2p^{2} - 3q^{2} + 6p^{2} + 4q + 10q^{2} = 9q + 8g$ $5q + 2p^{2} - 3q^{2} + 12q^{2} - 3q - 5p^{2} = 2q - 3g$ $6p^{2} + 4q + 10q^{2} + 12q^{2} - 3q - 5p^{2} = q + p^{2}$ c $6q + 3p^{2} + 19q^{2}$ a $7x + 7$ b $2m - 23$ c 12 d $12 - x$ e $8x + 6$ f $6x - 17$ a $8(x + 3) \text{ or } 8x + 24$ b $5(x - 2) \text{ or } 5x - 10$ c $3x + 34$

- 10a equation
 - **b** identity
 - c identity
 - d equation
 - e identity
 - f equation
- **11a** $2^2 + 2^2 = 4 + 4 = 8$ and $2^3 = 2 \times 2 \times 2 = 8$, so $2^2 + 2^2 \equiv 2^3$

b No, when x = 3, $3^2 + 3^2 = 9 + 9 = 18$ and $3^3 = 3 \times 3 \times 3 = 27$, so $3^2 + 3^2 \neq 3^3$

Exercise 2.2 **1 a** 3⁵ **b** 5⁴ **c** 4³ **d** 2⁶ **e** x² **2** a 4*x*² **b** 20*ab* **c** 2*t* **3 a i** 2⁹ **iii** x⁹ ii 3⁹ **b** When you multiply powers of the same variable together you add the powers. **c** i 2² ii x^2 d When you divide powers of the same variable together you subtract the powers **e** i 2¹⁵ ii 3¹⁵ **iii** x¹⁵ f When you raise the power of a variable to another power you multiply the powers **4** a x¹⁶ **b** z⁸ **C** v⁸ 5 a y⁶ **b** *n*⁹ **C** w⁶ **6** $3x^2 \times 5x^3 = 15x^5$ $3x^2 \times 7x^5 = 21x^7$ $3x^2 \times 2x^4 = 6x^6$ $5x^3 \times 7x^5 = 35x^8$ $5x^3 \times 2x^4 = 10x^7$ $7x^5 \times 2x^4 = 14x^9$ **7** a 3*a*⁵ **b** 5b³ **c** 5*n*² **d** 6*t* **e** 12*p*⁷ **f** 10*x*³ 8 Any two expressions that simplify to give $24x^5$ One expression must be a multiplication and the other a division e.g. $2x \times 12x^4$, $48x^8 \div 2x^3$

9 a
$$\frac{5y^5 \times 9y^3}{3y^6} = 15y^2$$

b $\frac{4y^2 \times 12y^7}{6y^5} = 8y^4$
10a $16x^4$ b $4y^6$ c $27z^{12}$

d $\frac{x^6}{3}$ **e** $\frac{y^8}{40}$

d
$$\frac{x^6}{64}$$
 e $\frac{y^8}{49}$ **f** $\frac{z^{15}}{27}$

11a Sometimes true – when a = 2 and b = 2

- **b** Always true $x^a \div x^b \equiv x^{a-b}$
- **c** Sometimes true when a = 2 and b = 2
- **d** Sometimes true when c = 0 and d = 0
- **e** Always true $(yc)^d \equiv (yd)^c$
- **f** Always true $y^d \times y^c \equiv y^{c+d}$

Exercise 2.3

1 a 15*ab*

- **b** 6*m*²
- **c** -20*n*²
- **d** 14*a*⁵
- **e** −30p⁵
- **2 a** 6*x* + 10
 - **b** 12 8*y*
 - **c** $y^2 + 3y$
 - **d** 2*x* 2
 - **e** 30 + 3*p*
 - **f** $10s s^2$
- **3 a** $x^2 + 5x$
 - **b** $8y + y^2$
 - **c** $2p^2 5p$
 - **d** $12q 6q^2$
- **4** The HCF is 4 not 2, so fully factorised it is 4(3x 4)
- **5 a i** x(3x + 2) ii $3x^2 + 2x$ **b i** 2y(5 + 3y) ii $10y + 6y^2$ **c i** 5z(3z - 7) ii $15z^2 - 35z$
- **6 a** $x^3 + 4x^2$
 - **b** $14x^6 6x^5$
 - **c** $5x^4 + 10x^3 + 35x$
 - **d** $x^4 5x^3 + 7x^2$
- **7 a** 7*a* + 11*b*
 - **b** 14*x*³ + 26*x*
 - **c** $18 6y + y^3 8y^2$
 - **d** $5t^2$ + $10t 4t^5 + 8t^3$
- **8 a** $x^3 + 4x^2$
 - **b** $2 \times x \times x + 4 \times x(x + 4) = 2x^2 + 4x^2 + 16x = 6x^2 + 16x$
- **9** a x²
 - **b** p
 - **c** y²
 - **d** 4*z*
 - **e** 5*m*³
 - **f** pq

- **10a** $3x(5x^2 1)$
 - **b** 16x(2 + x)
 - **c** 3x(5 + 7x)
 - **d** $3x(x^2 + 2)$
 - **e** $y^2(1 7y^2)$
 - **f** $3y^3(y^2 + 5)$
 - **g** $4y^{3}(3y-1)$

11a A

- bС
- c They are all different
- **12a** i $4x^3 + x(3x^2 + 7x) = 4x^3 + 3x^3 + 7x^2 = 7x^3 + 7x^2 = 7x^2(x + 1)$ ii $2b(b^2 + 3b) - b(b^2 + 8b) = 2b^3 + 6b^2 - b^3 - 8b^2 = b^3 - 2b^2$ $2b^2(b - 1) - b^3 = 2b^3 - 2b^2 - b^3 = b^3 - 2b^2$
 - **b** $6y(y^3 3) 2y(2y^3 11) \equiv 2y(y^3 + 3) 2y$
- **13** Students' own answers.

```
Exercise 2.4
```

```
1 a 20
  b 40
  c 54
  d 9
2 a x = 5
  b x = 3
  c x = 6
  d x = -17
  e x = 10
3 a 4x = x + 3
  b x = 1
4 a 23
  b 35
  c 24
  d 35
5 a, b A 15a + 5b
                         B 18a + 2b
  c A 35
                B 50
6 x = 5
7 a 63
  b 28
  c 34
8 a s = 100 m
  b s = 76 m
  c s = 72 m
9 a 24x^2 - 5x^3
  b i 19 cm<sup>3</sup>
     ii 56 cm<sup>3</sup>
     iii 81 cm<sup>3</sup>
     iv 64 cm<sup>3</sup>
  c when x = 5 the difference is negative, which cannot be true for a volume.
10a x = 4
  b y = 2
  c z = 5
  d x = 9
11a x = 6
  b y = 3
12a x = 5
  b piece of card is 4 cm by 10 cm and the hole is 2 cm by 8 cm
```

2 Check up

Simplifying and substituting into expressions

```
1 a 10x<sup>2</sup>
  b 11a<sup>2</sup> – 6b<sup>2</sup>
 c 11y + 5y^2
2 a 2x + 5 \equiv x + 7 + x - 2
  b 2x + 1 = 4x - 3
3 a 11
  b 12
  c 20
  d 6
4 a 54
  b 1
```

Index laws

- **5** a x⁵
 - **b** y¹⁰
 - **C** z⁶
- **6 a** 30*x*⁶
 - **b** 2*b*²
 - **c** 9*p*⁸
 - **d** 4*p*³

e $\overline{25}$

Expanding and factorising

```
7 a x^3 + 2x^2
  b 6x^2 - 12x^2
  c 3x^4 + 2x^3 - x^2
8 a 11x + 5
  b -3x^2 - 4x
  c 13x^3 + 22x
9 5x^3 + x^2(3x - 4) = 5x^3 + 3x^3 - 4x^2 = 8x^3 - 4x^2 = 4x^2(2x - 1)
10a 6x(x + 3)
  b 2y^{3}(4-y)
  c 8xy(2 - xy)
```

Solving equations

11 *x* = 4 **12** x = 7

2 Strengthen

Simplifying and	substituting into expressions
1 a 5x ²	
b 5 <i>t</i> ³	
c 9 <i>y</i> ⁴	
2 6 <i>y</i> , -7 <i>y</i> , 3 <i>y</i> , - <i>y</i>	
5 <i>y</i> ² , 2 <i>y</i> ² , - <i>y</i> ² , 11 <i>y</i> ²	
-12 <i>y</i> ³ , <i>y</i> ³ , 4 <i>y</i> ³	
3 a 12 <i>x</i> + 5 <i>x</i> ²	
b $3a^2 + 2b^2$	
c $11p^3 - 10n^2$	
d $4v^3 + 3v + 4$	
4 a 43	
b 5	
c 12	
d 45	
5 a 60	
b 40	
c 16	
d 144	
6 a 48	
b 36	
c 15	
d 95	
Index laws	
1 a x ⁷	
b y ⁷	
C <i>z</i> ⁹	
2 a <i>x</i> ⁴	
b y ³	
C <i>z</i> ⁵	
3 a x ⁶	
b y ⁸	
c z ¹⁵	
4 a 6 <i>x</i> ⁴	b 20 <i>y</i> ⁷
c $18p^7$	d 72 <i>q</i> ⁸
e 2 <i>a</i> ⁴	f 3 <i>b</i>
g b ⁴	h 2 <i>b</i> ⁶

```
5 a 25x<sup>6</sup>
```

b 64*m*¹⁵ **c** 81*n*¹² **d** $\frac{x^{6}}{4}$ **e** $\frac{w^{12}}{2}$

1 a $x^3 + 3x^2$

Expanding and factorising

b $y^3 - 5y^2$ **c** $2x^4 - 8x^3$ **d** $6y^4 + 12y^3$ **2** a 8*x* + 11 **b** 6*a* + 10 **c** $2x^2 + 7x$ **d** $11a - 2a^2$ **3** a $3x + 2 \equiv x + 5 + 2x - 3$ **b** 5x + 7 = 27**c** $8p^2 \equiv 2p \times 4p$ **d** $t + t + t + 8 + 3 \equiv 3t + 11$ **e** 3x - 9 = 2x + 6**f** $5(x+3) \equiv 3x + 2x + 20 - 5$ **4 a** LHS and RHS both simplify to $14x^3 - 3x^2$ **b** LHS and RHS both simplify to $y^3 - 12y^2$ **5 a** $2x^2(1 + 4x)$ **b** $6d(6-5d^3)$ **c** $2q^2(3q-7)$ **d** $9u^2(3u + 4)$ **e** 5*b*(*b* − 10) **f** 4mn(9 + 2mn)

Solving equations

```
1 a x = 3
  b x = 6
  c x = 2
  d x = 4
2 a 10(2x - 8) or 20x - 80
  b i 92
     ii 6x – 10
     iii 102 – 6x
  c 20x - 80 = 102 - 6x
  d x = 7
```

Enrichment

- **1 a** Mean = $6x^2 2y^3 + 3z$
 - **b** When x = 2, y = 1 and z = 3
 - i 11, 72, -28, 69
 - **ii** 31
 - **iii** 31
 - **iv** 100

2 a

x	-4	-3	-2	-1	0	1	2	3	4
у	0	2.65	3.46	3.87	4	3.87	3.46	2.65	0

c The shape is a parabola.

```
2 Extend
```

- **1** a v = 5
 - **b** *v* = 7.5
 - **c** *v* = 18
- **2 a i** $5(4p^2 + 3pq 2q^2)$
 - ii $8(3q^2 pq 4p^2)$
 - **b** $14q^2 + 7pq 12p^2$
 - **c** i $52p^2 + 23pq 34q^2$
 - ii $34q^2 23pq 52p^2$
 - d One is the negative of the other
- **3** a A 2(6*a* + 18), B 3(4*a* + 12) or 4(3*a* + 9) or 6(2*a* + 6), C 12(*a* + 3)
 - bi C
 - ii Tallest rectangle, as the largest number has been factorised out as the width.
 - c i, ii Students' own answers.
 - **d** A 12*a* + 40, B 8*a* + 30 or 6*a* + 26, 4*a* + 24, C 2*a* + 30
 - $e\ i\ \ A\ 2\ by\ 30,\ B\ 3\ by\ 20\ or\ 4\ by\ 15\ or\ 6\ by\ 10,\ C\ 12\ by\ 5$
 - ii A 64, B 46 or 38 or 32, C 34
- **4** a LHS = $15a^3 + 18a 12a^3 = 3a^3 + 18a$, RHS = $3a^3 + 21a$
 - **b** Make the 7 into a 6
- **5 a** 5(ab + 2bc 5ac)
 - **b** $24(2x^2y 3y^2 + 5x)$
 - **c** 13(5pt + 3ty yx 4xp)
- **6** a $4y(4y^2 + 5y + 6)$
 - **b** 2x(6x + 3y 1)
 - **c** 6xy(3x xy + 5y)
 - **d** $6p^2q^3r^3(10r 35pqr^2 + 9p^3q)$
- 7 a $6xy 12x^2 + 15x^2y = 3x(2y 4x + 5xy)$
 - **b** $6a^{3}b + 14a^{2}b 12a^{3}b^{2} = 2a^{2}b(3a + 7 6ab)$
- 8 Find the value of each expression when x = -2, y = -4 and z = 3.
 - **a** 95
 - **b** 5
 - **c** 7
 - **d** 4
 - **e** 12
- **9** $12x^4 + 2x^3 + 5x^2 21x$

10a
$$5a + 6b - c^2 = -34$$
, $\sqrt{d} + h^2 = 31$, $\frac{g^2 + b^2}{2h} = -9$, $f - 2\sqrt{d+i} = -26$, $\frac{abc}{d} - e^2 = -62$
 $\sqrt[3]{e} + a^2 + \frac{d}{b} = 2$

b Any expression that has a value of 60. Students must use at least three of the letters from the table, and their expression must include a power or a root.

11 Yes, $5xy^2$ will be negative and y^3 will be negative, but z^2 will be positive, so as long as z^2 is large enough, the expression will be positive e.g. when x = -2, y = -1 and z = -4

12a
$$-\frac{5}{16}$$

b $\frac{9}{16}$
13a i $4x + 3$

```
13a i 4x + 3

ii 180 - 2(4x + 3) or 174 - 8x

b 5(3x - 2) = 180 - 2(4x + 3) or 15x - 10 = 174 - 8x

c x = 8

d ABC and ACB = 35° and BAC = 110°

Total = 180°

14a i 9x - 10

ii 360 - 104 - 2(9x - 10) or 276 - 18x

b 4(2x - 9) = 360 - 104 - 2(9x - 10) or 8x - 36 = 276 - 18x

c x = 12

d CBA = 104°, BAD and BCD = 98°, ADC = 60°

Total = 360°

15 Adrian = 3, Beth = 5, Carl = 12, Deeba = 31
```

- **16** 9 or -9
- 17

19a and **b** Students answers for A term × B term C term

c
$$\frac{9y^5 \times 6y^3}{3y^7} = 18y$$

d $\frac{12y^8 \times 8y^9}{2y^5} = 48y^{12}$

20

21 a
$$a^{x} \times a^{y} \times a^{z} = a^{x+y+z}$$
, $\frac{a^{x}}{(a^{y})^{z}} = a^{x-yz}$, $\frac{a^{x} \times a^{y}}{a^{z}} = a^{x+y-z}$, $\frac{a^{x}}{a^{y} \times a^{z}} = a^{x-y-z}$,
 $a^{x} \times (a^{y})^{z} = a^{x+yz}$, $\frac{(a^{x})^{y}}{a^{z}} = a^{xy-z}$, $(a^{x})^{y} \times a^{z} = a^{xy+z}$
b $a^{xz-y} = \frac{(a^{x})^{z}}{a^{y}}$

2	ι	Jnit test
1	а	$5y^2$
	b	$5x + x^3$
	С	$7d^3 - 3 + 2d^2$
2	а	x ¹⁰
	b	y ¹⁰
	С	z ¹⁰
	d	m^{15}
	е	b^7
3	а	$p^4 + 2p^2$
	b	$2m^3 - 8m^2$
	С	$6y^4 - 4y^3 + 14y^5$
	d	$24x + 12x^2 - 24x^3$
4	а	$14p^2 + 13p$
	b	$5v^2$ + $6uv - 4v$
5	a	and c
6	Lŀ	$+S = 3y(5y^2 + 4y) + 2y^2(1 + 3y) = 15y^3 + 12y^2 + 2y^2 + 6y^3 = 21y^3 + 14y^2 = 7y^2(3y + 2)$
7	а	7y(y + 4)
	b	$3x(3-7x^2)$
	С	$4w(3w^2 + 5w - 8)$
8	40).2 m
9	а	20
	b	41
10)a	10
	b	4
	с	4
	d	8
11	<i>x</i> =	= 9
12	a. د	x = 7
4 3	D	50 21.8
13	bd L	2 1 <i>y</i> ² 5 <i>t</i> 8
	u u	50 ⁻ Az6
	C	4 5
	d	$\frac{q^{\prime}}{2\pi}$
		27
	е	x

Exercise 3.1

- 1 a i 4 triangles, 1 square
 - **b** i 2 triangles, 3 rectangles
 - c i 2 pentagons, 5 rectangles
 - **d i** 6 triangles, 1 hexagon
- ii Triangular prismii Pentagonal prism

b

ii Hexagonal-based pyramid

ii Square-based pyramid

- 2 a Cuboid
 - **b** Triangular-based pyramid
 - c Cylinder
- 3 a

С

d

u

5 a

Plan	Front	Side

b

С Plan Front Side

Front

Side

b		
Plan	Front	Side

d

Plan	Front	Side	

- 8 a Triangular-based pyramid.
 - **b** Square-based pyramid.
 - c Cone or cylinder or sphere.
 - d Cuboid or cylinder.
- **9** Students' own answers, for example, sketches of cylinder, cuboid, triangular prism, trapezoidal prism.
- 10a i Square
 - ii 2 cuboids
 - b i Square
 - ii 2 cuboids
 - c i Rectangle
 - ii 2 triangular prisms
 - d i Triangle
 - ii Top left part makes a triangular-based pyramid.

С

Plan

Exercise 3.2

- 1 a 14 cm²
 - **b** 16 cm² or 1600 mm²
 - **c** 17.5 cm²
 - **d** 34 cm²

ii 24 cm²

3 a A, C, E

b A triangle, C pentagon, E trapezium.

4 a

b 6 cm^2 , 28 cm^2 , 6 cm^2 , 21 cm^2 , 35 cm^2

c 96 cm²

ii 46 cm²

bi

7 324 cm²

8 9.5 cm

Exercise 3.3

- **1 a** 7.5 cm²
 - **b** 43.75 cm²
 - **c** 880 mm²
 - **d** 24 cm²
 - **e** 3150 mm²
- **2** a 280 cm³
 - **b** 140 cm³
 - **c** 20 cm²
- **3 a i** 7 cm²
 - ii 35 cm³
 - **b** i 10.8 cm²
 - ii 162 cm³
- **4 a** 432 cm³
 - **b** 196 cm³
- 5 8 cm
- **6 a** 33.75 cm²
 - **b** 201.75 cm²
- 7 Any 3D shape with a volume of 36 cm³
- 8 a 95.25 m²
 - **b** 1428.75 m³
 - **c** 1 428 750 *l*

Exercise 3.4

1 a i 4.3

- ii 4.33
- **b** 937 cm
- **c** 75 mm
- 2 a 18 cm
 - **b** 4.5 cm
 - **c** 11 cm
 - **d** 2.5 cm
- 3 a, b, d , e

- c OP or OQ
- f No, the line does not go through the centre.
- 4 a 6 cm
 - **b** 8.4 cm
- 5 a 37.7 cm
 - **b** 13.5 cm
 - **c** 44.0 cm
 - **d** 18.2 cm
- 6 a 11.8 mm
 - **b** 96.4 m
 - **c** 1087.0 km
- 7 a i 25.1 cm
 - **ii** ½
 - iii 12.6 cm
 - **b** i 44.0 cm
 - ii ¼
 - iii 11.0 cm
- 8 a i 3.6 cm
 - ii 8.2 cm
 - **b** i 14.1 cm
 - ii 23.1 cm
- **9** 200.11 m

10a 75.4 cm

- **b** 37.7 cm
- **c** 6.3 cm
- 11 Yes, 62.8 cm and 31.4 cm
- **12** 15.7 m
- 13 628 lights
- 14 76 mm
- **15** 2387 cm

Exercise 3.5

1 a 16

- **b** 100
- **c** 5
- **d** 3/2 or 1.5
- **2 a** x = 12.6
 - **b** A = 254.3
 - **c** p = 4.5
- **3 a** 50.3 cm²
 - **b** 19.6 m²
 - **c** 153.9 cm²
 - **d** 18.9 cm²
- **4 a** 254.5 cm²
 - **b** 834.7 cm²
 - **c** 1134.1 mm²
 - **d** 16.3 m²
- 5 a 153.9 cm²
 - **b** 77.0 cm²
 - c 38.5 cm²
- 6 a 190.1 cm²
 - **b** 17.3 cm²
 - c 27.7 cm²
- 7 a 850.1 cm²
 - **b** 113.1 cm²
 - **c** 26.1 cm²
 - d 127.3 cm²

 $8\ 201.1\ \text{cm}^2,\ 50.3\ \text{cm}^2.$ No, the area is 4 times as large.

9

Pizza diameter	Pizza area	Cost	Area per £1		
8 inch	50.3 in²	£5.99	8.4 in²		
10 inch	78.5 in²	£7.99	9.8 in²		
12 inch	113.1 in²	£9.99	11.3 in²		

10a 5.1 cm

b 4.7 cm

11a 32 m², 3.2 m

b 28 cm², 3.0 cm

12a 2.5 m

- **b** 7 m
- **c** 49 m²

KS3 Maths Progress Delta 2

13 10591 m²
14a 13.7 cm²
b 122.5 cm²
15 3376.7 mm²

Exercise 3.6

- **1 a i** 31.4 cm **ii** 78.5 cm²
 - **b** i 22.0 cm
 - ii 38.5 cm²
- **2** a 96
 - **b** 3
 - **c** 4
- **3** 96 cm³
- 4 a

- **b** 125.7 cm², 50.3 cm², 50.3 cm²
- **c** 226.3 cm²
- 5 a

- **b** πr^2 , πr^2 , $2\pi rh$
- **c** $2\pi r^2 + 2\pi rh$. Total surface area of cylinder = $2\pi r^2 + 2\pi rh$
- 6 a 207.3 cm²
 - **b** 483.8 cm²

7 a i	78.5 cm²	bi	201.1 cm ²	С	i 7.1 cm ²
i	i 706.9 cm ³	ii	603.2 cm³		ii 63.6 cm ³

KS3 Maths Progress Delta 2 8 a Students' own answer, for example, 'The tall thin one because the area of each one is small.' OR 'The shortest one, because the area around the middle is small.'

b A 125.7 cm², B 75.4 cm², C 106.8 cm²

9 Capacity of the saucepan is 4084.1 cm³, which is more than 4 litres, so the claim is correct.

```
Exercise 3.7
```

- **1 a** 73
 - **b** 90.1
 - **c** 11.4
 - **d** 2.8
- 2 a Students' copy diagram into exercise book.
 - **b a** = 20 mm
 - **b** = 40 mm
 - **c** = 45 mm
- 3 a AB
 - **b** DF
 - c HI
 - **d** KJ
- 4 a 8.1 cm
 - **b** 6.7 cm
 - **c** 8.2 cm
- **5** 12.04 m
- 6 b, c
- 7 a 4.4 cm
 - **b** 11.3 cm
 - **c** 4.6 cm
- **8** h = 7.4 cm

```
Area = 11.1 cm<sup>2</sup>
```

9 h = 11.6 cm

```
Area = 34.9 cm<sup>2</sup>
```

10 6.2m

- 11a 64 cm²
 - **b** 11.3 cm
 - c 128 cm², double the area.
 - **d** 450 cm²
- 12a 7.2 cm
 - **b** i 5.8 cm
 - ii 10.8 cm
 - iii 6.1 cm

3 Check up

- **1 a i** 37.7 cm
 - ii 113.1 cm²
 - **b** i 34.6 cm
 - ii 95.0 cm²
- **2 a** 33.2 cm²

b 23.7 cm

b

	Plan	Fre	ont	Side		
-						

P	lan	Side				
-						

- 5 Students' own sketch of a cylinder.
- 6 Surface area = 510 cm^2
 - Volume = 450 cm³
- **7 a** Volume = 115.45 cm³
 - **b** Surface area = 142.94 cm²
- 8 a 25 cm
 - **b** 8.5 cm
- **10** Students' own answers.

3 Strengthen

Circumference and area of circles

```
1 a r = 5 cm, D = 10 cm
   b r = 8 cm, D = 16 cm
2 a 3.1
   b 12.6
   c 22.0
   d 31.4
   e 113.1
3 a 7 cm
   b C = \pi \times 7
   c 22.0 cm
4 a i Diameter = 2 × radius
      ii \pi \times diameter = \pi \times 2 \times radius
      iii \pi d = 2\pi r
   b i 40.8 cm
      ii 53.4 cm
5 a 2.5 cm<sup>2</sup>
   b π x 2.5<sup>2</sup>
   c 19.6 cm<sup>2</sup>
6 a 36.3 cm<sup>2</sup>
   b 66.5 cm<sup>2</sup>
7 a ½
   b 78.5 cm<sup>2</sup>
   c 39.3 cm<sup>2</sup>
   d 31.4 cm
   e 15.7 cm
  f 25.7 cm
8 a 30.2 cm<sup>2</sup>
   b 22.1 cm
9 217.1 cm<sup>2</sup>
```

Working with 3D solids

c 162 cm²

c circular faces = 12.6 cm² each, rectangle = 75.4 cm²

- d 100.5 cm²
- **e** 75.4 cm³

Pythagoras' Theorem

- **1** a 6.1 cm
 - **b** 91 mm
 - **c** 5.7 cm
- 2 a i, ii

- 3 7.5 cm, 85.6 mm, 10.8 cm
- 4 a 11.5 cm²
 - **b** 60 cm²
 - **c** 27.7 cm²

Enrichment

Method A

- 1 a 1 7 cm
 - 2 49 cm²
 - **3** 6 cm²
 - 4 25 cm²

Method B

- 1 5 cm
- 2 25 cm²

b Students' own answer for example, 'Method B because once I worked out the x the rest of the question was straight forward.' OR 'Method A because I just had to work out the different areas.'

3 Extend

1 0

1	а								
		Plan		Fror	nt		Si	ide	
			+				-	_	
	+		+	-			+	_	
_	┝		-	-	-		+	-	-
2	2	75.4 cm							
2	a h	37.7 cm							
z	2	113 1 cm	²						
J	a h	144 cm^2	1						
	r c	78 5 %							
	d	50.3 cm ²	64	78	5%				
4	ă	She left	, ο., π in f	he a	ansv	ver.			
-	b	$C = 11\pi$	cm.	A =	30.2	25π	cm²	2	
5	a	Students	' ow	n an	ISWE	ers			
	b	C ≈ 7.9 c	m						
	с	d ≈ 2.5 c	m						
	d	e Studer	nts' d	own	ans	wer	s		
6	31	l.8 cm							
7	а	i 4.6 m							
		ii 21.7 ro	otatio	ons					
	b	i 92.6 c	m						
		ii 14.7 c	m						
8	а	3 cm							
	b	7.6 cm							
	С	22.8 cm ²							
	d	36 cm ²							
	е	127.2 cm	1 ²						
	f	84 cm³							
9	а	149 cm							
	b	74.6 km							
10)a	$6x = 360^{\circ}$	°, so	<i>x</i> =	60°				
	b	x + 2y = 1	180°	, so	<i>y</i> =	60°			
	С	Equilater	al						
	d	4.3 cm							
	e	10.8 cm ²							
	t	64.9 cm ²							
11	a	3.8 cm							
	Ø	4.1 CM							

- 12a 9.1 cm
 - **b** 18.2 cm²
- 13a i 40.8 cm
 - ii 183.8 cm²
 - **b** i 5.2 cm
 - ii 15.7 cm²
- 14 i a Surface area = 270 cm², volume = 210 cm³
 - **b** Surface area = 301.2 cm², volume = 233.8 cm³
 - ii Shape b
- 15 7.2 miles
- **16a i** AB = 7.1 cm
 - ii BC = 10 cm
 - iii AC = 7.1 cm
 - **b** Isosceles
- **17a** 4.5 cm
- **b** 0.08 cm
- 18 2250 cm³; 2010.6 cm³. No it's too small.
- **19a** 9.95 cm
 - **b** 10.30 cm

3 Unit test

- ii 12.56 cm
- **b** i 267.04 mm²
- ii 5674.50 mm²
- 3 a 22.7 cm²
 - **b** 19.5 cm
- **4 a** D
 - bΑ
 - сΒ
- 5 a i 36 cm³
 - ii 84 cm²
 - **b** i 80 cm³
 - ii 140 cm²
- 6 a 10.8 cm
 - **b** 7.4 cm
- 7 a 14.32 cm
- **b** 6.18 cm
- 8 22.2 cm²
- 9 7.6 cm
- **10** 15 cm²
- **11a** 70.7 cm³
 - **b** 103.7 cm²

d

Side	
_	-

Exercise 4.1

- **1 a** 2040 yen
 - **b** £1.75
 - **c** £6
- **2 a** 50 p or £0.50
 - **b** £2.50

С

Grams of sweets	0	100	200	300	400	500
Cost (£)	0	0.50	1	1.50	2	2.50

d

- 3 B and D
- 4 a Yes
 - **b** ≈ 10 cm
 - $\mathbf{c} \approx 7$ inches
 - d 6 inches
 - **e** ≈ 13.25 cm
 - **f** ≈ 37.5 cm

200

```
Exercise 4.2
```

- **1** A (10, 3)
 - B (35, 4.2)
 - C (23, 3)
 - D (8, 5)
 - E (46, 0.2)
- **2 a i**£14 **ii**£10
 - **b** Unlimited pay an infinite amount.
 - **c** £12
 - d 0 minutes
 - e 150 minutes
 - f Hannah B, Jeff A, Matt A
- **3 a** The share price increased.

```
b $11
```

- c September 1, November 1
- d July 1, October 1
- **e** \$480
- **4 a** £300 000
 - **b** £500 000
 - c 2004, 2008, 2009, 2011, 2012, 2013
 - **d** 2007
 - e i Income decreased. ii Income increased.
 - f It is hard to predict as the graph goes up and down.
- 5 a i House prices increased.
 - ii House prices decreased.
 - iii House prices stayed about the same.
 - **b** 5%
 - **c i** 4% **ii** 17%
 - **d** i £81,120 (using 4%) ii £64,740 (using 17%)
 - %) iii £95,160 (using 22%)

- **6** a £2
 - **b** £4
 - c 6-8 hours

Exercise 4.3

- 1 11.10 am
- 2 a 0.5 hours
 - **b** 3 hours
 - c 2.25 hours
- **3 a** 800 m
 - **b** Stays the same/does not change.
 - c 15 minutes
 - d 10 minutes
 - e 10 minutes
 - f 30 minutes

5 a 150 km

- b 2 hours
- **c** i 0 km/h
 - ii 50 km/h
 - iii 16.7 km/h
- 6 a Sania The time to get to the friends' house is the same as the time to get home.Karl The time at the friends' house is not long enough.

Exercise 4.4

- **1 a** ≈ £2550
 - **b** ≈ 8.3 years
 - **c** £2000
 - **d** ≈ £2100
- **2 a i** C
 - ii A
 - iii B
 - **b** D The runner starts off quickly, stops for a while and then runs quickly to the finish.
 - E The runner starts off slowly, then runs quickly and then runs slowly again to the finish.
- 3 a A, B and F
 - **b** E and H
 - c After 5 minutes (part C). The water level rises quickly.
 - d 8 minutes
 - e A water fills up the bath quickly.
 - B water fills up the bath more slowly.
 - C person gets in.
 - D person sits in bath
 - E some water let out of bath.
 - F water tops up the level of the bath.
 - G person gets out of the bath.
 - H the bath begins to empty.
- **4 a** ≈ £12 000
 - b 0-2 years
 - c After 3 years
 - d No
- 5 a A
 - **b** A 1
 - B 2
- 6 a Narrow part
 - **b** Graph B

- **b** No it is not a linear graph.
- c Because Luke's arm is 1 m above the ground when he throws the ball.
- d Approximately 1.4 seconds and 7.2 seconds
- e One is on the way up, the other is on the way down.
- $\mathbf{f} \approx 8.6 \text{ seconds}$

Exercise 4.5

- 1 a Saturday
 - **b** 2
 - c He received more.
- **2** No title; no labels or key; percentages add up to more than 100; 34% sector looks bigger than 27% sector.
- 3 a It does not increase by the same number. You multiply by 10.

- c It decreased (rapidly)
- 4 a The first graph
 - **b** The second graph.
 - **c** £750
 - **d** 7.4%

4 Check up

Direct Proportion

- **1 a i** 16 km
 - ii 3 miles
 - iii 1.6 km
 - iv 50 miles
 - **b** It is a straight line graph that goes through (0, 0).

2 a

- e Venue B, £80

Distance-time graphs

- 3 a 45 km
 - **b** 15 minutes
 - c 1 hour 15 minutes
 - **d** Between the pizza shop and his brother's house. This is the steepest part of the graph.

- 5 a 550 km
 - **b** 3 times
 - **c** 61.1 km/h

Real-life graphs

- 6 a i The number of visitors increased.
 - ii The number of visitors decreased.
 - **b** i ≈ 0.85 million
 - ii ≈ 0.65 million
- 7 Vase 1 B

Vase 2 A

4 Strengthen

Direct Proportion

- **c** Straight line through (0,0) (or the origin)
- 2 C and D
- **3 a** £225
 - **b** £150
 - c 50 minutes
- 4 a-d

- e Plan B
- f Plan A, £10
- **g** 7

Distance-time graphs

1 a i C ii A iii B

- **b** 10 minutes
- c 40 minutes
- **d** 1 km
- **e** 9 km
- f 9 km in 20 minutes
 - 9 km in 40 minutes
- g On the way there
- h Fastest

- **b** 5 miles
- **c** 240 miles
- d 6 minutes
- e 6.5 hours
- f 36.9 mph

Real Life Graphs

1 a 5

- **b** i £116 000
 - ii £158 000
- **c** £4000
- **d** 2003
- **e** 2007
- **2** a £50
 - **b** £280
 - **c** All the values in the table are approximate.

Age of bike (years)	0	1	2	3	4	5	6	7	8	9	10
Cost (£)	280	220	175	145	120	100	80	70	60	55	55

- d Between 0 and 1 years
- e The line is the steepest
- f No

3 a ≈ 52%

- **b** ≈ 3%
- c Between 1995 and 2000
- d The percentage increased
- **e** 65%

- 4 a i Blue line ii Red line
 - **b** i ≈ 16 °C ii ≈ 8 °C
 - c i July ii February
 - **d** July

Enrichment

- **1 a** ≈ 340 yuan
 - **b** ≈ 3740 yuan
 - $\mathbf{c} \approx 480$ Indian rupees
 - **d** \approx 1700 Indian rupees
 - e ≈ 9500 Indian rupees
 - **f** ≈£10

Unit 4 Answers 4 Extend 1 a i August ii April **b** i 9°C ii 11.5°C **c** i ≈ 59 mm ii ≈ 122 mm 2 a 150 mph **b** 100 miles 3 a Remy's Journey 300 Distance from home (miles) 250 200 150 100 50 0 2 3 4 5 6 7 8 9 10 11 12 13 0 1 Time (hours) **b** 54.5 mph 4 a 921.7 km/h **b** 866.5 mm/day c 26.2 m/s 5 a 8.3 m/s **b** 0.0 083 km/s c 0.5 km/min

d 30 km/h

- 6 a 190 km
 - **b** 400 m
 - c The first one.

- **b** i 56 mm ii 65 mm
- c Because the scales are very different
- d It is warmer but not always wetter in Florida

8 a i

10a i 30%

ii 20%

- **b** The percentage of the population aged 0-14 decreased.
- c 40-64 and 65 +
- **d** Older. The percentage of the population ages 40+ is increasing and the percentage ages 0-39 is decreasing.
- 11a Decreases
 - **b** ≈ 65 N/cm²
 - c No
 - d You cannot put a force on an area of 0 $\rm cm^2$
 - e i They will mark the floor because a lot of force goes through a small area (the heel).
 - ii A sharp knife has a smaller area so the same force will generate a higher pressure.

iii They put a large force through a small area - their toes.

12a 100 million websites.

- **b** Multiply by 10 every square.
- **c** 1992
- **d** i ≈ 200 million ii ≈ 120 million iii ≈ 300 000
- e Students' own answer, for example, 'Left hand graph for (i) and (ii), right-hand graph for (iii).'
- f Approximately 1 000 000 000

b No

- c Yes
- **d** No, Braking distance = (Stopping distance) (Thinking distance)

Because stopping distance is not in direct proportion, breaking distance will not be in direct proportion.

14

16a 1 second

- **b** Just before, and just after it hits the ground the first time.
- **c** 0 m/s
- **d** The maximum height would continue to decrease.

4 Unit test

1 a i 15.5. Accept 15.3 - 15.7

ii 17.1. Accept 17.0 - 17.2

B – i

C – iii

D - ii

- **b** March and September
- c Lerwick
- d Lerwick
- 2 a 1 hour
 - b First part
 - **c** 45 km/h
- 3 A iv

~


```
b £40
```

- c £15 per hour
- **d** No, the graph does not go through the origin.
- 5 a 158. Accept 157 159
 - **b** School A
 - **c** 2012
 - d i School A increasing
 - ii School B decreasing
- **6 a i** £25
 - ii £32
 - **b** 1.6 GB
- 7 A and C
- 8 a i £30 000
 - ii £12 000
 - iii £2000
 - **b** Increasing

- **e** $\binom{-9}{3}$

f No

Exercise 5.2

- 1 b and c
- 2 a 90° clockwise
 - **b** 270° clockwise
 - $\boldsymbol{c}~270^\circ$ anticlockwise
 - d 180° anticlockwise

3

© Pearson Education Ltd 2014. Copying permitted for purchasing institution only. This material is not copyright free.

- **6 a** Square: 180° about (-2, 3)
 - **b** Rectangle: 90° clockwise (or 270° anticlockwise) about (4, 5)
 - c Trapezium: 90° anticlockwise (or 270° clockwise) about (6, -4)
 - d Kite: 90° clockwise about the point (-6, -4)

7

From	То	Centre of rotation	Angle
А	С	(-2.5, 4.5)	180°
А	F	(2, 8)	90° anticlockwise / 270° clockwise
А	В	(0.5, -0.5)	90° clockwise / 270° anticlockwise
В	С	(2.5, 7.5)	90° clockwise / 270° anticlockwise
В	F	(5, 3)	180°
С	F	(0.5, 0.5)	90° clockwise / 270° anticlockwise
E	Н	(0, -2)	180°

d Centre of enlargement at (0,3) with scale factor 3.

KS3 Maths Progress Delta 2

Unit 5 Answers

Exercise 5.4

31 8 С 4 а b 10 . -10 -8 -6 -4 -2 0 8 6 2 -4 -6 -8 10

b

3 a

С

5 a i, ii Student's own drawings.

iii They are congruent.

b Enlargement scale factor
$$\frac{1}{4}$$
 about the point (0, 1)

© Pearson Education Ltd 2014. Copying permitted for purchasing institution only. This material is not copyright free.

Exercise 5.5

- **1 a i** Reflecting in y axis (or x = 0)
 - ii $\begin{pmatrix} -4 \\ 0 \end{pmatrix}$
 - **b** i Reflection in *x*-axis (or y = 0)
 - ii $\begin{pmatrix} 0 \\ -5 \end{pmatrix}$
 - **c** i Reflection in y = 1ii $\begin{pmatrix} 0 \\ -4 \end{pmatrix}$

- **c** $\binom{0}{2}$
- **d** Reflection in x = 0 (or *y*-axis)
- **e** Reflect in line x = 0, translate $\binom{0}{2}$, translate $\binom{0}{2}$

5 a, b

c Reflection in the *y* –axis, reflection in the *x*-axis OR reflect parallelogram in *y*-axis, then y = -x, then *x*-axis, then y = x, then *y*-axis, then y = -x.

- **6 a** $\binom{4}{0}$ $\binom{0}{2}$ $\binom{3}{0}$ $\binom{0}{-6}$ $\binom{6}{0}$ $\binom{0}{4}$
 - **b** Reflection in x = 6.5

7 a-c

© Pearson Education Ltd 2014. Copying permitted for purchasing institution only. This material is not copyright free.

c Enlargement scale factor 3, centre of enlargement (1, 1)

10a, b

Exercise 5.6

- **1** a Perimeter = 12 cm, Area = 9 cm^2
 - **b** Perimeter = 12 m, Area = 8 m^2
 - **c** Perimeter = 15.4 mm, Area = 10 mm²
- **2 a** Volume = 30 cm³
 - **b** Volume = 8 mm³

5 a 16 cm

- **b** i 6 cm and 10 cm
 - ii 32 cm
- **c** Lengths of sides: 9 cm and 15 cm Perimeter = 48 cm

- 6 a 20 cm b 30 cm
 - **c** 40 cm
 - **d** 5 cm
- **7** a i 4
 - ii 30.5 cm
 - iii 122 cm
 - **bi** 2
 - ii 18 cm
 - iii 36 cm
- 8 a 15 cm²
 - **b** 135 cm²
- **9** 140 cm²
- 10a 720 cm²
 - **b** 1620 cm²
- **11** 480 cm³
- **12** 80 000 cm³

5 Check up

Reflection, rotation and translation

- 1 a 5 right 1 up
- b 1 left, 4 down
- **2** Rotation through 180° about the point (1, -1)
- **3** a Reflection in x = 1
 - **b** Reflection in y = -x
- 4 a 12.5 cm
 - **b** 12.5 cm
 - **c** 12.5 cm
- 5 a–c

Enlargement

6 a

Planes of symmetry

9 5 planes of symmetry

5 Strengthen

Reflection, rotation and translation

c The object and its image are on top of each other.

8 A

- **9** a Rotation 180°, centre (0, 1)
 - **b** Rotation 90° clockwise / 270° anticlockwise, centre (-2, 1)

Enlargement

1 Y to C 6 right, 2 up × 2 = 12 right, 4 up

Y to D 2 right, 2 up \times 2 = 4 right, 4 up

7 a i 20 cm³

ii 160 cm³

b 8

Planes of symmetry

- 1 C
- **2** 2

Enrichment

c (3, -4)

d

Point	(3, 4)	(2, 7)	(1, 5)	(9, 2)	(–1, 3)	(2, –4)	(2,7)	(8,1)	(0, 3)
Reflection in the x- axis	(3, –4)	(2, -7)	(1, –5)	(9, –2)	(–1, –3)	(2, 4)	(–2, 7)	(–8, 1)	(0, –3)

 ${\bf e}\,$ The x-coordinate stays the same and the y-coordinate is multiplied by -1.

f

Point	(3, 4)	(2, 7)	(1, 5)	(9, 2)	(–1, 3)	(2, –4)	(-2, -7)	(8, -1)	(0, 3)
Reflection in the y- axis	(-3, 4)	(-2, 7)	(–1, 5)	(-9, 2)	(1, 3)	(-2, -4)	(2, -7)	(8, –1)	(0, 3)

5 Extend

1 a, b

c Reflection in the *y*-axis (x = 0)

2 a–i

4 a, b, d

9 a True

8 a

- **b** True
- c False
- d True

e No

17a £55.92

b 3240

c £454.35

- d 36 hours
- **18a** 484 m²

b 684 m³

19 240 ml

20a Centre (-5, 5) scale factor 5

- b Centre (-2, -2) scale factor 3
- c Centre (4, 5) scale factor 2

5 Unit test

1 a 90° anti-clockwise about (-1, 1)

2 a–c

d Reflection in x –axis (y = 0).

b
$$\frac{1}{2}$$

- 6 51 cm
- **7** 480 cm³

Exercise	6.1

1 a 0.125 **b** 0.875 **c** $0.08\dot{3}$ **2 a** $0.\dot{6}$ **b** 0.17 **c** $0.\dot{5}4\dot{8}$ **3 a** 9x **b** 99*x* **4 a** x = 6**b** x = 9**5 a** $x = \frac{1}{2}$ **b** $x = \frac{3}{4}$ **c** *x* = 6 f $\frac{10}{33}$ **d** $x = 1\frac{1}{3}$ **e** $\frac{17}{99}$

6 a 0.166 666... or 0.16

b 1.666 666... or 1.6

7 a 0.09,0.18

b $0.\dot{2}\dot{7}$, $0.\dot{3}\dot{6}$, $0.\dot{4}\dot{5}$, $0.\dot{5}\dot{4}$, $0.\dot{6}\dot{3}$, $0.\dot{7}\dot{2}$, $0.\dot{8}\dot{1}$, $0.\dot{9}\dot{0}$

8 92 p

9

Flour	117 g
Butter	88 g
Sugar	105 g
Eggs	2
Vanilla	29 ml

10a	$\frac{1}{9}$
b	$\frac{2}{3}$
11a	<u>17</u> 99
b	$\frac{277}{333}$

c $\frac{26}{111}$

KS3 Maths Progress Delta 2

Exercise 6.2

- **1** a 1.1
 - **b** 1.15
 - **c** 0.77
 - **d** 0.95
 - **e** 1.025
 - **f** 0.91
- **2** £300
- **3** 10.5 cm

4

Without VAT	Including VAT
£10	£12
£15	£18
£25	£30
£40	£48
£60	£72
£100	£120
£150	£180

5 5100

6

Item	Original price	Discount	New price
scented candles	£12.50	25%	£9.38
house signs	£14.99	20%	£11.99
desk tidies	£10.50	15%	£8.93
sealed jars (small)	£7.99	12%	£7.03
sealed jars (large)	£9.99	14%	£8.59
coasters	£6.00	22%	£4.68

7 £5600

8 £80

9 £250 000

10 £23 550

- **11** £830
- **12a** £7.08
- **b** £38.13

13a £1794.50

b We don't know if they used the same amount of fuel.

14 11 million

15 1 hour 48 min

16 £825

Exercise 6.3

- **1 a** 80%
 - **b** 21.4%
 - **c** 12%
 - **d** 55%
- 2 a 35 more
 - **b** 10%

3

Person	Original weight (kg)	Final weight (kg)	Percentage
А	74	78	5.4%
В	68	70	2.9%
С	90	93	3.3%
D	107	112	4.7%

A made the biggest improvement

4

Printer	Old ink	New ink	Percentage increase
Printer A	1254	1456	16.1%
Printer B	4152	4786	15.3%
Printer C	4563	5554	21.7%
Printer D	2759	3173	15.0%

Yes it is true

- **5** 4.0%
- 6 a No.

b Her rise should be 11.1%

7 a Car D

b Yes, all increases are greater than 10%

- 8 a £6.70 less
 - **b** 6.4%

9 75%

- 10 37.5% decrease.
- **11** 2.6% decrease.
- 12 Cat

Exercise 6.4

- **1 a** £452.25
 - **b** £396.98
- **2 a** 1.3225
 - **b** 1.08 243
 - **c** 3093.38
- 3 5 years

4

Bank	Interest rate	Start balance	End of year 1 balance	End of year 2 balance	End of year 3 balance	End of year 4 balance
Bank A	1.2%	£5000	£5060	£5120.73	£5182. 17	£5244.35
Bank B	1.3%	£5000	£5065	£5130.85	£5197.55	£5265.11

- 5 £28 679.04
- **6 a** £1530
 - **b** £1689.24
 - c £1902.36
- 7 5 years
- 8 £15 647.99
- 9 a 18.65 billion
 - **b** 13.21 billion
- **10a** 100%
 - **b** 167 772 160
- **11** £58.43

6 Check up

Recurring decimals

- **1 a** 0.222 222...
 - **b** 0.833 333...
- **2** a 0.142 857 142 857
 - **b** 0.068 181 818 181

3 a
$$\frac{7}{9}$$

b $\frac{7163}{}$

9900

Using percentages

4 a £38.50

b £118.71

- **5** A 1.2
 - B 0.8
 - C 1.02
 - D 0.02
 - E 1.002
 - F 1.8
- 6 a 47.6 m²
 - **b** 70.8 m²
- **7** £185
- 8 6.5m
- **9** 18%
- Denes Dynamos 11% decrease; Edgefield Eagles 12% decrease 10

Repeated percentage change

- 11 £520.93
- 12 £102.66
- 13 £5587.87
6 Strengthen

Recurring decimals

1 b and c **2** a 0.777 777 777 777 **b** 0.133 333 333 333 **c** 0.131 313 131 313 d 0.123 333 333 333 e 0.231 313 131 313 f 0.317 317 317 317 **3 a** $0.0\dot{6}$ **b** 0.142857 **4 a** 0.16 **b** 0.6 c $\frac{2}{3}$ **d** No, $\frac{3}{6} = \frac{1}{2} = 0.5$ **5** $\frac{4}{9}$ **6** a $\frac{2}{3}$ b $\frac{1}{3}$ c $\frac{5}{9}$ **7** a $\frac{23}{99}$ b $\frac{74}{99}$ c $\frac{9}{11}$ 8 a $\frac{1}{6}$ b $\frac{61}{90}$ c $\frac{7}{15}$

Percentages

- **1** a 1.2
 - **b** 1.15
 - **c** 0.9
- **2 a** 78
 - **b** 92
 - **c** 150.5
- **3 a** 76.5
 - **b** 96
 - **c** 72.96

4		
Car	New price	
А	£11 088	
В	£12 988.80	
С	£5913.60	
D	£23654.40	

5 a £157 250

b £191 632.50

c £319 515

6 £56

7 a £30

b £18

c £18

8 £30

9 a £625

b £750

c £750

Percentage change

1 a 4%

b Check: $4\% \times \pounds6000 = \pounds240$

2 a i 25%

ii 30%

iii 85%

- **3** a 25%
 - **b** 15%
 - **c** 37%

4

ltem	Old price	New price	% change
multipack crisps	£1.25	£1.30	4%
baked beans (tin)	64p	68p	6.25%
milk (litre)	£1.50	£1.56	4%
washing powder (1kg)	£4.80	£5.10	6.25%

5 a

Person	Original mass	New mass	% change
Shemar	94kg	89.3kg	5% decrease
Daniel	82.5kg	85.8kg	4% increase
Jennifer	76kg	74.1kg	2.5% decrease

b Shemar

c Daniel

© Pearson Education Ltd 2014. Copying permitted for purchasing institution only. This material is not copyright free.

KS3 Maths Progress Delta 2

6 End of year 1 £824; end of year 2 £848.72; end of year 3 £874.18

7 £1429.22

8

Name	Investment	Interest rate	Value
Anya	£1000	2%	£1082.43
Birgitte	£800	3%	£900.41
Carlos	£1200	1.9%	£1293.83

Carlos has the most money after 4 years.

9 £378.83

10a Percentage is compounded

- **b** £327.68
- **11** £110 94.36

Enrichment

1 £100 invested at 1% compound interest for 5 years gives £105.10

£100 invested at 2% compound interest for 5 years gives £110.41

So, investing at 2% gives slightly more than double investing at 1%

6 Extend

1 a No

b £100 x 0.9 = £90, £90 x 1.1 = £99

2 $\frac{1}{14} = 0.071428571...; \frac{2}{14} = 0.142857142...; \frac{3}{14} = 0.214285714...; \frac{4}{14} = 0.285714285...; \frac{13}{14} = 0.928571428...$

The digits begin to follow the same cyclic sequence (...714285...).

3 a
$$\frac{223}{990}$$
 b $\frac{334}{495}$ c $\frac{247}{495}$ d $\frac{73}{300}$

4
$$\frac{3}{7}$$

5

Staff	Pay rise	Original salary
shop floor staff	2.4%	£17 600
shop floor manager	2.8%	£23 450

6 a

Department	Percentage reduction	Original staff number
telemarketing	7.1%	254
sales	20.6%	564
administration	12.9%	248
accounts	9.8%	512

b 13.7%

7

Show	Percentage change	Original length
Breakfast show	12.5% reduction	40 minutes
Buy that house!	8.3% increase	1 hour
Rip-off busters	6.7% increase	1 hour 15 minutes
Helicopter Rescues	21.4% decrease	1 hour 10 minutes
Lunchtime news	44.4% decrease	81 minutes

8 6.83 cm

- 9 a i 227 cm
 - ii 207 cm
 - **b** No, because the increase is compounded.

10 63 872

11a 60

b 62

12

Bird	Day 1	Day 2	Percentage increase
sparrow	56	95	70%
chaffinch	45	84	87%
gold crest	25	37	48%
blue tit	98	135	38%
blackbird	17	24	41%

Chaffinch has greatest increase

13a

Fraction	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{5}$	$\frac{1}{6}$	$\frac{1}{7}$	$\frac{1}{8}$	$\frac{1}{9}$	$\frac{1}{10}$	$\frac{1}{12}$	$\frac{1}{20}$
Decimal	0.5	0.3	0.25	0.2	0.16	0.142857	0.125	0.1	0.1	0.083	0.05

b 3, 6, 7, 9, 12

c 2, 4, 5, 8, 10, 20

d 2; 3; 4: 2 × 2; 5; 6: 2 × 3; 7; 8: 2 × 2 × 2; 9: 3 × 3; 10: 2 × 5; 12: 2 × 2 × 3; 20: 2 × 2 × 5

e Yes, Dan is correct.

14a i 2% ii 4% **iii** 6%

- b If you round to the nearest 1% then the answer to part iii is the same as the sum of the answers to parts i and ii, but without the rounding the percentage changes are different because of compounding.
- **c** i 5% ii 3%
- 15a 39 million
 - b 53.2 million
 - **c** 36.4%
 - **d** 49%
 - e No, percentages are of different amounts
- 16a £9274.19
 - b 8 years
- 17 £179 106.92
- 18 67.93 million
- 19a 4297 rabbits, 28175 foxes
 - b Year 6
- 20a £114 600
 - **b** £109 011
 - c 17 years

6 Unit test

- **1** a 0.555 555...
 - **b** 0.416 666...
 - **c** 0.466 666...
 - **d** 0.727 272...
- **2** a 0.16
 - **b** $0.\dot{2}\dot{3}$
 - **c** 0.136
- 3 a 64.4 kg
- **b** 490.5 g
- 4 a 34.4 cm
- **b** £503.25
- **5** £49
- **6** 425

7 a $\frac{8}{9}$

' a
$$\frac{8}{9}$$
 b $\frac{3}{11}$ c $1\frac{13}{33}$ d $\frac{115}{333}$

- 8 None
- 9 14% loss
- 10 19% increase
- 11 £5081.18
- **12** 26
- 13 £16 696.06
- 14 £100.27
- 15 5.78 million

Exercise 7.1

- 1 Line of length 8.2 cm
- 2 Angles drawn accurately
 - **a** 27°
 - **b** 138°
- 3

Not drawn to scale

8 Yes, using a ruler, compass and protractor (two possible triangles). More difficult using just a ruler and protractor, but still possible.

- 9 b 12.1 cm
 - **c** 121 cm
- 10a Students' own drawing.
 - **b** 15°
 - **c** i 7 cm
 - ii 700 cm
- **11** Students' accurate drawings.
- **12a** Students own drawings.
 - **b** AC = 39 km, BC = 28 km
 - c From A, 1 h 34 min, from B, 1 hour 7 min
- **13** 27 m

Exercise 7.2

- 1 a Cube
 - **b** Square-based pyramid
 - c Triangular prism
 - d Cuboid
- 2 a Not drawn to scale

7.5 cm

7.5cm

5 a Students' own accurate drawings.

7.5 cm

- **b** Yes, ladder makes and angle of 68° to the ground.
- 6 Not drawn to scale

KS3 Maths Progress Delta 2

Exercise 7.3

- \boldsymbol{c} Rhombus
- e Midpoint of AC and BD. Cross at right-angles.
- 4 a Students' accurate construction of perpendicular bisector.
 - **b** Students check their answers.
 - c P is equidistant from A and B.
- 5 a Not drawn to scale

- **b** Isosceles
- c Students' accurate construction of perpendicular bisector.
- d Two congruent right-angled triangles.
- 6 Students' accurate construction.

7 a, b Students' accurate constructions

8 Not drawn to scale

- 9 a, b Perpendicular bisector passes through P.
- 10a, b Not drawn to scale

c 4 m

Exercise 7.4

- 2 a, b Students' accurate constructions.
- 3 a 12 m
 - **b** 2.5 cm
- 4 Students' accurate constructions.
 - **a** i 70°
 - iii 35°
 - **b** i 130°
 - iii 65°
- **5** Students' accurate constructions.
 - **a** Bisect 60° to give 30°
 - **b** Bisect 90° to give 45°
- 6 b Not drawn to scale

 $c 29.52 m^2$

- 7 b 5.1 m
- 8 Students' accurate construction.
- 9 Students' own answer.

Exercise 7.5

- 1 Distance is always the same.
- 2 Students' accurate construction.
- 3 Students' accurate construction.
- **4** Circle with radius 5 m.
- 5

- 6 Students' accurate construction.
- 7 a Students' accurate scale drawing
 - **b** 16.3 m
- 8 Not drawn to scale

9 Not drawn to scale

10 Not drawn to scale

b No

11 Circle with radius 100 km, centred on transmitter

7 Check up

Accurate drawings

- **1** Students' accurate constructions.
- 2 Students' accurate scale drawing.

Constructions

3 a, b Not drawn to scale

4 a, b Not drawn to scale

5 Not drawn to scale

Loci

6 a, b Not drawn to scale

7 Not drawn to scale

9 a, b Not drawn to scale

7 Strengthen

Accurate drawings

- 1 a, b Students' accurate drawing.
- 2 a, b, c Students' accurate drawings.
- 3 Not drawn to scale

- 4 Students' accurate constructions.
- 5 Not drawn to scale

- 6 a i 7 cm
 - ii 5 cm
 - iii 6.5 cm
 - **c** 9.6 cm
 - **d** 960 m

Constructions

- 1 Students' accurate construction of triangle.
- 2 Students' accurate construction of triangle.
- 3 Students' accurate scale drawing.
- 4 Not drawn to scale

- 5 Students' accurate construction of perpendicular bisector.
- 6 Students' accurate construction of angle bisector.
- 7 Students' accurate construction of angle bisector.

9 Students' accurate construction.

11 Students' accurate construction.

Loci

- 1 a, b, c Points that are all the same distance from a dot make a circle.
- 2 a, b Circle radius 4 cm, mark X centre.
- **3 a**, **b** Students' accurate construction.
 - **c** Points that are all the same distance from two dots make the **perpendicular bisector** of the line joining them.
- 4 Not drawn to scale

- **5 a**, **b** Students' accurate construction.
 - **c** Points that are all the same distance from two lines meeting at an angle make the **angle bisector** of the angle.
- 6 c Semi-circles.

Enrichment

1 A i; B ii; C v; D iv; E iii

7 Extend

- **1 a** Students' accurate scale drawing.
 - **b** 16.2 m
- 2 a–d

- c Perpendicular bisectors of sides pass through the same point P.
- d Circumscribing circle.
- e Students' accurate construction of triangle with obtuse angle.
- 3 a, b Students' accurate constructions.
- 4 b Perpendicular is 4.1 cm
 - **c** area = 21 cm²
- **5 a**, **b** Students' accurate construction.
 - c Students' own answer. For example:

7 a, b Not drawn to scale

8 a-d Not drawn to scale

 ${\boldsymbol c}~$ A, B and C are on circumference of circle.

9 a 45°

b, **c** Students' accurate drawing of octagon.

c Angle bisectors pass through the same point.

11 Not drawn to scale

12a, b In the shaded intersection area, the pitch is watered by both sprinklers.

13 Not drawn to scale

iii b

14a Students' accurate construction of triangle

b, c 12.8 cm

15 a–c Not drawn to scale

First position allows cat to cross the garden. Second position prevents cat from crossing garden.

16 On a sphere of radius 24 375 km with centre at the Earth's centre (assumes Earth is a sphere).

7 Unit test

- 1 a, b Students' accurate construction of triangles.
- 2 Students' accurate scale drawing.
- 3 a, b

4 a, b Not drawn to scale

5 Not drawn to scale

6 b–d

Exercise 8.1
1 a $\frac{7}{10}$
b $\frac{2}{3}$
2 0.1 = 10% = $\frac{1}{10}$ 0.2 = 20% = $\frac{1}{5}$
$0.25 = 25\% = \frac{1}{4} \qquad \qquad 0.4 = 40\% = \frac{4}{10}$
$0.5 = 50\% = \frac{1}{2}$
3 a, b
E C B A D impossible unlikely even chance likely certain
$\frac{1}{2} = 0.5$ 1
0% 50% 100%
4 a A 1, 2, 3, 4, 5, 6, 7, 8
B 1, 2, 3, 4, 5
b A 8: B 5: C A
5 a 2 4 6
b 1 2 3 4
c 2, 3, 5
d 2, 3, 4, 5, 6
6 a -d i $\frac{5}{10}$ or $\frac{1}{2}$ or 0.5 or 50%, even chance ii $\frac{3}{10}$ or 0.3 or 30%, unlikely
iii $\frac{7}{10}$ or 0.7 or 70%, likely iv 0 or 0%, impossible
7 a $\frac{26}{52}$ or $\frac{1}{2}$ or 0.5 or 50% b $\frac{1}{52}$
c $\frac{4}{52}$ or $\frac{1}{13}$ d $\frac{12}{52}$ or $\frac{4}{13}$
8 a Red
b Bag B
7
9 a i <u>160</u>
ii $\frac{17}{160}$

b Girl with brown eyes (32 vs 24)

10a i The number 3 with dice B $(\frac{1}{5} \text{ vs } \frac{1}{10})$

ii An even number with dice A ($\frac{1}{2}$ vs $\frac{2}{5}$)

 $\boldsymbol{b} \;\; \mathsf{Dice} \; \mathsf{B}$

- 11 Kampala
- 12 a Fair
 - **b** Unfair because Nora has greater chance.
 - c Fair (if you count ace as 1).

Exercise 8.2		
1 a $\frac{2}{5}$		
b $\frac{7}{10}$		
c $\frac{11}{12}$		
2 a 0.3		
b 67%		
3		
impossible	even chance	certain
0	$\frac{1}{2} = 0.5$	1
0%	50%	100%
4 a 1, 2, 3, 4, 5, 6		
b $\frac{1}{6}$		

d The sum of the probabilities of all possible outcomes is 1.

e
$$\frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} = \frac{5}{5} = 1$$

5 88%

6 a The Venn diagram shows two events: square numbers and multiples of 3. Intersection is empty. There is no square number that is also a multiple of 3.

b 2 and 5 are neither square numbers or a multiple of 3.

c $\frac{2}{6}$ or $\frac{1}{3}$ **d** $\frac{2}{6}$ or $\frac{1}{3}$ **e** $\frac{4}{6}$ or $\frac{2}{3}$

f True because P(rolling a square number) + P(rolling a multiple of 3) = $\frac{1}{3} + \frac{1}{3} = \frac{2}{3}$ = P(rolling a square number or a multiple of 3)

7 a Because the intersection is not empty. 1 is a square number and is less than 4.

b $\frac{2}{6}$ or $\frac{1}{3}$ **c** $\frac{3}{6}$ or $\frac{1}{2}$ **d** $\frac{4}{6}$ or $\frac{2}{3}$

e False because P(rolling a square number) + P(rolling a number less than 4) = $\frac{2}{6} + \frac{3}{6} = \frac{5}{6}$

whereas P(rolling a square number or a number less than 4) = $\frac{4}{6}$

8 a No

b Yes

c No

d Yes

9 a 0.3

b 0.15

c 0.35

10a No intersection.

b P(square) =
$$\frac{2}{6}$$
 or $\frac{1}{3}$, P(prime) = $\frac{3}{6}$ or $\frac{1}{2}$, P(biggest) = $\frac{1}{6}$
c $\frac{6}{6}$ = 1
d 1
11 0.3
12a $\frac{5}{6}$
b $\frac{3}{6}$ or $\frac{1}{2}$
c 0.9
13 95%

Exercise 8.3

- **1** a 15
 - **b** 120
 - **c** 105
- **2** a 37%
 - **b** 45%
 - **c** 15.2%

3 a–c

Outcome	Frequency	Relative frequency
Great improvement	75	$\frac{75}{100}$
Slight improvement	20	$\frac{20}{100}$
Same or worse	5	$\frac{5}{100}$
Total frequency	100	

- **d** 285
- **4 a** 325
 - **b** 405

Seats	Frequency	Relative frequency
2	30	$\frac{30}{80}$
3	10	$\frac{10}{80}$
4	25	$\frac{25}{80}$
5	5	$\frac{5}{80}$
6	10	$\frac{10}{80}$
Total frequency	80	

b
$$\frac{30}{80}$$
 or $\frac{3}{8}$ or 0.375 or 37.5%

c Incorrect. P(less than 4) = $\frac{40}{80}$ = 0.5, even chance.

Number of bananas	Frequency	Relative frequency
200–219	120	120
		1000
220–239	160	160
		1000
240–259	200	200
		1000
260–279	230	230
		1000
280–299	170	170
		1000
300–319	120	120
		1000
Total frequency	1000	

i
$$\frac{120}{1000}$$
 or 0.12 or 12%

ii $\frac{520}{1000}$ or 0.52 or 52%

c 2600

5 a

7 280
8 a i
$$\frac{21}{50}$$
 or 0.42 or 42%
ii $\frac{14}{50}$ or 0.28 or 28%

b 56

9 Sven, because of the larger sample.

10a $\frac{11}{20}$ **b** $\frac{45}{80}$ or 56.25%

c Odval's because the sample is larger.

d i
$$\frac{56}{100}$$
 or 0.56 or 56% ii 112

Exercise 8.4 **1** a $\frac{1}{10}$ or 0.1 or 10% **b** $\frac{2}{10}$ or 0.2 or 20% **2 a** 6 **b** 15 **3 a** 50 **b** i $\frac{8}{50}$ or 0.16 or 16% ii $\frac{42}{50}$ or 0.84 or 84% **c** 16 **4 a** $\frac{4}{52}$ or $\frac{1}{13}$ **b** $\frac{13}{52}$ or $\frac{1}{4}$ 5 A No B No C Yes 6 a 5 **b** 25 **c** 24 **7** a $\frac{1}{4}$ or 0.25 or 25% **b** 25

c Probably fair because frequencies are close to 25. Spin more times to be more confident.

Exercise 8.5									
1	а	$\frac{5}{8}$			b	$\frac{3}{8}$			
	с	1			d	$\frac{3}{8}$			
	е	$\frac{2}{8}$	=	$\frac{1}{4}$					
2	а	Η,	Н	Η,	т	Т, Н	Τ, Τ		
	b	4							
	с	i	$\frac{1}{4}$	or 0	.25	or 25%		ii	$\frac{1}{2}$ or 0.5 or 50%

	Н	Т
1	H, 1	T, 1
2	H, 2	T, 2
3	H, 3	Т, З
4	H, 4	T, 4
5	H, 5	T, 5
6	H, 6	Т, 6

12 possible outcomes

b i
$$\frac{3}{12}$$
 or $\frac{1}{4}$ or 0.25 or 25%
ii $\frac{2}{12}$ or $\frac{1}{6}$
iii $\frac{2}{12}$ or $\frac{1}{6}$

E	X	ercise	8.6			
1	а	$\frac{1}{5}$				
	b	58%				
	С	0.3				
2	а	$\frac{3}{6} = \frac{1}{2}$		b $\frac{8}{12} = \frac{2}{3}$	<u>}</u> }	
	с	$\frac{3}{16}$		d $\frac{7}{18}$		
3	а	$\frac{1}{2}$ or 0.5	or 50%	b	$\frac{1}{4}$ or 0.2	5 or 25%
	С	i				
			*	•	•	¥
		н	♣ , H	♠ , H	♦ , H	♥ , H
		т	♣ , T	♠ , T	♦ , T	♥ , T
		ii <u>1</u>				

d Same probability.

4 a No

$$\boldsymbol{b} \ \ \text{Yes}$$

5 a
$$\frac{1}{36}$$

b
$$\frac{1}{12}$$

c
$$\frac{1}{1}$$

8 Check up

Calculating probability

			Ĩ	2
		1	2	3
	2 nd spin	2	3	4
		3	4	5
b	i $\frac{2}{9}$	ii -	$\frac{5}{9}$	

c Yes, because the outcome of the first spin doesn't affect the outcome of the second spin.

5 No, because Doran has a greater chance of winning $(\frac{5}{10} \text{ vs } \frac{4}{10})$

Estimating probability

6 a $\frac{1}{5}$

b No; the expected frequency of white is $\frac{1}{5} \times 60 = 12$ times, compared to the experimental frequency of 20.

KS3 Maths Progress Delta 2

7 **a** i
$$\frac{38}{80} = \frac{19}{40}$$
 ii $\frac{12}{80} = \frac{3}{20}$ iii $\frac{21}{80}$
b Male aged 25 or over $(\frac{21}{80} \text{ vs } \frac{18}{80})$

c
$$\frac{7}{26}$$

38

8 <u>a</u>

Visitor	Frequency	Relative frequency
Adult	70	70
		$\overline{200}$
Child	90	90
		200
Dog	40	40
		200
Total frequency	200	

b
$$\frac{90}{200}$$
 = 0.45

Tree diagrams

9 a 0.3

b

© Pearson Education Ltd 2014. Copying permitted for purchasing institution only. This material is not copyright free.

iv
$$\frac{13}{80}$$

8 Strengthen

Calculating probability

1 a 10
b 4
c
$$\frac{4}{10}$$
 or $\frac{2}{5}$
d i $\frac{6}{10}$ or $\frac{3}{5}$ or 0.6 or 60%
ii 0
iii $\frac{5}{10}$ or $\frac{1}{2}$ or 0.5 or 50%
iv $\frac{8}{10}$ or $\frac{4}{5}$ or 0.8 or 80%
2 a 17
b i $\frac{17}{180}$ **ii** $\frac{49}{180}$
c $\frac{20}{92} = \frac{5}{23}$
d $\frac{40}{88} = \frac{5}{11}$
3 a

		Race 2		
		1st	2nd	3rd
	1st	1, 1	1, 2	1, 3
Race 1	2nd	2, 1	2, 2	2, 3
	3rd	3, 1	3, 2	3, 3

b 9

c
$$\frac{1}{9}$$

d (1, 1), (1, 2), (1, 3), (2, 1), (3, 1)
e $\frac{5}{9}$

				Spinner 1				
			1	1	2	2	3	3
		2	1, 2	1, 2	2, 2	2, 2	3, 2	3, 2
	0	2	1, 2	1, 2	2, 2	2, 2	3, 2	3, 2
	ner 1	4	1, 4	1, 4	2, 4	2, 4	3, 4	3, 4
	Spin	4	1, 4	1, 4	2, 4	2, 4	3, 4	3, 4
	0)	6	1, 6	1, 6	2, 6	2, 6	3, 6	3, 6
		6	1, 6	1, 6	2, 6	2, 6	3, 6	3, 6
i	i $\frac{12}{36}$	or $\frac{1}{3}$		ii $\frac{1}{3}$	$\frac{2}{6}$ or $\frac{1}{2}$	$\frac{1}{3}$	i	$\frac{24}{36}$

c Two even numbers.

d

		Spinner 1					
		1	1	2	2	3	3
	2	3	3	4	4	5	5
~	2	3	3	4	4	5	5
ner 2	4	5	5	6	6	7	7
Spin	4	5	5	6	6	7	7
	6	7	7	8	8	9	9
	6	7	7	8	8	9	9

e 5 and 7

f
$$\frac{32}{36}$$

5 a B

c A $\frac{1}{4}$, B $\frac{2}{8}$ or $\frac{1}{4}$, equally likely

7 a 6
b i
$$\frac{1}{6}$$
 ii $\frac{2}{6} = \frac{1}{3}$ iii $\frac{3}{6} = \frac{1}{2}$
iv $\frac{5}{6}$ v $\frac{5}{6}$ vi $\frac{3}{6} = \frac{1}{2}$
8 $\frac{4}{8} = \frac{1}{2}$
9 No, because P(H, H) is $\frac{1}{4}$ and P(H and T) is $\frac{1}{2}$

Estimating probability

b No, because the experimental frequency of 24 is much lower than the expected frequency of 40.

Tree diagrams

1 a B **b** $\frac{2}{52} = \frac{1}{26}$ **2 a** 0.04 **b i** 0.16 **ii** 0.16

iii 0.32

3 a

b i
$$\frac{4}{25}$$
 ii $\frac{9}{25}$ iii $\frac{12}{25}$

Enrichment

8 Extend

- **1 a** The matchbox is more likely to end face up because the base has a larger surface area than the end.
 - **b** Outcomes are not equally likely, so you cannot use the formula based on equally likely outcomes.

2 B, A, D, C

- 3 a Captain Cole 24%, Arrows Alan 32%
 - **b** Arrows Alan (32% vs 24%)
 - c Captain Cole because it is based on more data.

d 64

4 Students' own answer.

5 a
$$\frac{50}{800}$$
 = 0.0625 = 6.25%

- **b** 14 500
- c It is unlikely to be organic because only 10 out of 800 weigh 1.4 kg or more.
- **6** Yes, because 0.3 + 0.8 = 1.1 so the two events cannot be mutually exclusive.
- 7 a i 0.3
 - ii 0.63
 - b i 17.6, so 18 computers
 - ii 26.4, so 26 computers.
- 8 a

		Ben					
		1 1 1 3			3	4	6
	1	1, 1	1, 1	1, 1	3, 1	4, 1	6, 1
abel	2	1, 2	1, 2	1, 2	3, 2	4, 2	6, 2
Ann	3	1, 3	1, 3	1, 3	3, 3	4, 3	6, 3
	4	1, 4	1, 4	1, 4	3, 4	4, 4	6, 4

b Ben wins 9 outcomes, Annabel wins 10 outcomes, so the game is not fair.

c Ben 28 (28.4), Annabel 32 (31.6)

9 a, b

Colour	Probability	Prize	Expected number of wins in 200 games	Expected prizes in 200 games
red	0.2	50p	40	£20
blue	0.5	20p	100	£20
yellow	0.3	0р	60	£0

c \pounds 40 ÷ 200 = 20p so they should charge more than 20p.

10a i 1 ii 13 **b** 20 **c** $\frac{6}{20}$ or $\frac{3}{10}$ or 0.3 or 30% 11 Students' own answer. 12a i 0.4 ii 0.3 b Red 24, blue 48, green 12, black 36 **13** $\frac{4}{9}$ **14a** i $\frac{12}{50}$ or 0.24 or 24% ii $\frac{13}{50}$ or 0.26 or 26% **b** 49.98 = 50 days **c** $\frac{49}{2500}$ or 0.0196 15 1st 2nd Milk Dark White Milk Dark Dark White Milk White Vhite **b** $\frac{24}{30}$ or $\frac{8}{10}$ or 0.8 or 80% **a** $\frac{2}{30}$ or $\frac{1}{15}$ **16a** No because P(first counter is blue) = $\frac{4}{9}$ and P(second counter is blue) = $\frac{1}{2}$ b Red

KS3 Maths Progress Delta 2

17a
$$(\frac{20}{38})^3 = \frac{8000}{54872}$$

b P(W, W, L or W, L, W or L, W, W) = $\frac{12000}{54872}$
P(W, W, D or W, D, W or D, W, W) = $\frac{9600}{54872}$
So P(winning two of next three games) = $\frac{21600}{54872}$

8 Unit test

1 a
$$\frac{1}{6}$$

b $\frac{2}{6}$ or $\frac{1}{3}$
c $\frac{3}{6}$ or $\frac{1}{2}$
2 20

- - ·

Use	Frequency	Relative frequency
Discarded	50	$\frac{50}{1000}$
		1000
Food products	250	$\frac{250}{1000}$
Small	200	$\frac{200}{1000}$
Medium	300	$\frac{300}{1000}$
Large	200	$\frac{200}{1000}$
Total frequency	1000	

b
$$\frac{700}{1000}$$
 or 0.7 or 70%
c 1000

4 a
$$\frac{5}{10}$$
 or $\frac{1}{2}$ or 0.5 or 50%
b $\frac{3}{5}$ or 0.6 or 60%

- c Erica because 60% is greater than 50%
- 5 a (red, red), (red, red), (red, red), (red, red), (red, blue), (red, blue), (blue, red), (blue, red), (blue, blue)

b
$$P(A) = \frac{4}{9}$$
 $P(B) = \frac{5}{9}$

c No because event B includes the outcomes of event A.

6 Player A wins with 6 outcomes, and player B wins with 7 outcomes. So the game is not fair. Player B is more likely to win.

7 a i P(purple) = 0.4

ii P(pink) = 0.1

- **b** 6 white, 8 purple, 4 yellow, 2 pink
- 8 a

Exercise 9.1

- 1 a 200 cm
 - **b** 6.2 m
 - **c** 1.35 km
- 2 a 25 cm
 - **b** 30 cm
 - **c** 75 cm
 - d 22.5 cm

3

- 4 a 1800 m
 - **b** 1440 m
 - **c** 5400 m
 - **d** 720 m
- 5 a 20 cm
 - **b** 300 cm
 - **c** 45 cm
 - **d** 50 cm
 - e 250 cm
 - f 450 cm
- 6 a i 250 m
 - ii 150 m
 - **iii** 100 m
 - **b** 6 minutes
- 7 a 1 cm on the map is 200 km in real life.
 - **b** i 300 km
 - ii 540 km
 - **iii** 900 km
- 8 Angle is 78°

KS3 Maths Progress Delta 2

Exercise 9.2 1 Angles accurately drawn. **2 a** a = 323° **b** b = 98° **c** c, d = 70° 3 a 120 km **b** 6 cm **4 a** 090° **b** 180° **c** 270° **d** 135° **e** 225° **f** 315° **5 a** 115° **b** 295° 6 N 170 St Symphorien N 7.6 cm 3.4 cm 302 Bellegarde Salatos 7 a N N 0 Ship Lighthouse

Exercise 9.3

1 a 250 m

- **b** 400 m
- **c** 1 km
- **d** 1.5 km
- **2** a 1:5
 - **b** 1:3
 - **c** 1:15
 - **d** 1 : 10
- **3 a** 300
 - **b** 150
 - **c** 1000
 - **d** 1500
- 4 a 800 m
 - **b** 1200 m
 - **c** 900 m
 - **d** 100 m
- 5 A iv
 - Вi
 - C iii
 - D ii
- 6 a i 1.7 cm
 - ii 8.5 km
- 6 b i 12.5 km
 - ii 5 km
 - iii 15.5 km

7 a, b

- 8 a 1: 100
 - **b** 1 : 500 000
 - **c** 1: 20 000
 - **d** 1: 75 000
- **9 a i** 400 m
 - ii 2 km
 - iii 10 km
 - **b** i 100 cm
 - ii 20 cm
 - iii 4 cm

Exercise 9.4

1 a 2

- **b** $\frac{1}{2}$
- **2 a** a = c and b = d (vertically opposite).

b a = c and b = d (alternate angles).

- 3 A and C, B and E are congruent.
- 4

5 a SAS

b SSS

- c ASA
- 6 DEF congruent SSS

HGI congruent – SAS

JKL not congruent because the 93° angle is adjacent to the 4.2 cm dimension, not opposite to it.

- 7 Yes because SAS
- **8 a** *x* = *y* (vertically opposite angles)

c Angle AEB = Angle CED (vertically opposite)

Angle BAE = Angle EDC (alternate angles)

Angle ABE = Angle ECD (alternate angles)

```
AB = CD
```

As all angles are the same and one side is equal , the two triangles are congruent.

9 Angle BAC = 85° which is equal to angle EDF

Angle EFD = 30° which is equal to angle BCA

As all angles are the same the triangles are similar

10 12 cm

11a a = 4.5, b = 2

b c = 2.5 cm, d = 2.4 cm

12 A and C are similar.

Exercise 9.5

- 1 No, they are not similar.
- **2** x = 5 cm
- 3 a Vertically opposite
 - **b** d is equal to b alternate angles
 - c c is equal to f alternate angles
- **4 a** Angle DCE = 47° vertically opposite

Angle CDE = 74° – alternate angles

Angle CED = 59° – alternate angles

 ${\bf b}\,$ As all angles are the same the triangles ABC and CDE are similar.

- 5 a Angle MPN = Angle QPR vertically opposite
 Angle NMP = Angle PRQ alternate angles
 Angle MNP = Angle PQR alternate angles
 As all angles are the same the two triangles are similar.
 - **b** 6 cm
- 6 a Angle AEC = Angle BDC
 - Angle CAE = Angle CBD = 90°

Angle DCB = Angle ECA

As the triangles have the same angles they are similar.

- **b** 6 cm
- **c** 4 cm
- 7 a Angle ACB = Angle AED
 - Angle ABC = Angle ADC

Angle BAC = Angle DAE = 36°

As the triangles have the same angles they are similar.

- **b** 14 cm
- **c** 7 cm
- **d** 3 cm
- 8 320 m

9 Check Up

Maps and scales

- 1 48 cm
- **2** 0.5 cm
- **3 a** 250 m
- **b** 8 cm
- **4** 1000 m

Bearings

- **5** 020°
- 6 a

Congruence and similarity

- 7 A and C as they are SAS
- **8 b** *x* = 8 cm
 - **c** y = 6 cm
- **9** Angle AED = Angle ACB = 90°
 - Angle ABC = Angle ADE

Angle A is the same in both

AAA so are similar

- Angle DAE = Angle BAC, vertically opposite
 Angle DEA = Angle ACB, alternate angles
 Angle EDA = Angle ABC, alternate angles
 AAA, so are similar
 - **b** a = 10 b = 3

9 Strengthen

Maps and Scales

- **b** 075°
- **c** 170°
- **d** 240°

Congruence and Similarity

1 B

- 2 b i congruent ASA
 - ii similar AAA

iii congruent SAS

3 a

Р	Q			
5	10			
12	x			
13	У			
b 2				
C x =	c <i>x</i> = 24, <i>y</i> = 26			
4 6	6			
5 a = 1	a = 16 cm			
b = 3	b = 3 cm			
c = 9) cm			
d = 6 cm				
6 Can	d E			

- 7 a i Alternate angles
 - ii Alternate angles
 - iii Vertically opposite angles
 - ${\bf b}\,$ They are similar
 - **c** x = 4 cm, y = 10 cm
- 8 a BC and DE are parallel because both are at right angles to AE
 - **b** Angle ABC = angle ADE because triangles ABC and ADE are similar (AAA)
 - **c** 2
 - **d** 20 cm

9 Extend

- $c 600 m^2$
- **d** £40 500
- 6 a Students' own accurate scale drawing made using an appropriate scale.
 - **b** 40 m²
 - **c** 160
- **d** £800
- **7 a** 105°
 - **b** 105°
 - **c** 35°

d All angles are the same and all sides are the same.

- 8 a 8 cm
 - **b** 4.5 cm
 - **c** 85°
 - **d** 5 cm
 - **e** 45°
- 9 a 5 cm
 - **b** 15 cm
- 10 Memmingen

11a

b No

12a Bearing back to port is 230°

13 x = 6 cm, y = 12.5 cm

14 Angle B = Angle D

Angle BAC = Angle ACD – alternate angles Angle DAC = Angle BCA – alternate angles Side AD = Side BC

AAA and a side the same – must be congruent

15 OC is a side of both triangles

Side OB = OA as both radii so triangle ABO is an isosceles triangle.

Angle OBC = Angle OAC

Angle BOC = Angle AOC

As all angles are the same and two pairs of sides are the same, must be congruent.

9 Unit Test

- **1 a** 095°
 - **b** 150°
 - c Kalimnos
- 2 a 100 m
 - **b** 250 m
 - **c** 12.5 m
- 3 a 3 cm
 - **b** 8 cm
 - **c** 20 cm
 - **d** 0.2 cm
- **4 a** 1000 m
 - **b** 325 m
- 5 a

b 29 km **c** 260°

- **6 a** a = 80°, b = 6 cm, c = 8cm, d = 80°, e = 6 cm, f = 35°, g = 80°
 - **b** 6 cm side is between angles of 35° and 80° in A, B and C.
- 7 a a = 5 cm
 - **b** b = 12.8 cm
 - **c** c = 12.5 cm
- **8 a** a = 7 cm
 - **b** b = 9 cm, c = 12 cm
 - **c** d = 15 cm, e = 24 cm, f = 21 cm
- 9 a Angle ACE is the same in both triangles

Angle BDC = Angle AEC – corresponding angles

Angle DBC = Angle EAC – corresponding angles

As the angles are the same the triangles are similar.

b
$$6\frac{2}{3}$$

c 5

KS3 Maths Progress Delta 2

Triangle SXT and triangle VXU are congruent.
 Angle SXT = Angle VXU – vertically opposite
 Angle TSU = Angle SUV alternate angles
 Angle STV = Angle TVU alternate angles
 Side ST = VU

AAA and side equal, so must be congruent.

Triangle SXV and triangle TXU are congruent.

Angle SXV = Angle TXU – vertically opposite

Angle VSU = Angle SUT – alternate angles

Angle VTU = Angle SVT – alternate angles

Side SV = side TU

AAA and side equal so must be congruent.

Unit 10 Answers

Exercise 10.1

1 a *y* = 5

- **b** *y* = -3
- **c** *y* = -9
- **2** A *y* = 3
 - B *x* = 2
 - C *y* = −2
 - D *x* = −1.5

$$E y = x$$

- F y = -x
- 3 a

b
$$x = -\frac{12}{8} = -\frac{3}{2} = -1.5$$

c (0, 4),
$$(-\frac{3}{2}, 0)$$

© Pearson Education Ltd 2014. Copying permitted for purchasing institution only. This material is not copyright free.

Unit 10 Answers

E	xercise	10.2	
1	a (0, 4)		
	b (0, 1)		
	c (0, −5)		
	d (0, −2)		
2	В		
3	A 2	B $\frac{1}{2}$	
	C -2	D -3	
	E 1	F 2	
4	3		
5	а		
	1		
	с		
	/		
6	a 0.5 or $\frac{1}{2}$		
	b $-\frac{1}{3}$		

Equation of line	Gradient	Y-intercept
y = 2x - 5	2	-5
<i>y</i> = <i>x</i> + 1	1	1
y = 3x + 4	3	4
y = -x + 2	-1	2
y = -2x - 7	-2	-7
$y = \frac{1}{3}x + 1$	$\frac{1}{3}$	1

Students' own graphs, with appropriate axes.

- **8 a** (0, 10)
 - **b** £10
 - **c** 0.5
 - **d** £0.50
- 9 a

7

Unit 10 Answers

Exercise 10.3

c y = 300x + 500

© Pearson Education Ltd 2014. Copying permitted for purchasing institution only. This material is not copyright free.

KS3 Maths Progress Delta 2

11a (3, 11)
b No
12a C
b A, C, G
c None
d A, D, F
Exercise 10.4

- 1 A, B perpendicular; C, D parallel
- **2** Gradient 4; *y*-intercept -7
- 3 They are equal.

b y = -5x - 4

- 4 A and E
- 5 **a** y = 3x + c **b** y = -2x + c **c** y = 3x + 4 **d** y = -2x - 56 **a** y = 2x + c **b** y = 2x + 37 y = 30x + 5008 $y = \frac{1}{2}x + 2$ 9 **a** $y = -\frac{1}{2}x + c$ **b** $y = \frac{1}{3}x + c$ **c** y = -2x + c10 y = 4x - 711 **a** $y = \frac{1}{2}x + \frac{1}{2}$

Exercise10.5 1 a -1 b 3 c 16 d 7			
2 a \rightarrow \rightarrow \rightarrow -2 $-$	\rightarrow \rightarrow -2 \rightarrow	÷3)→	c \rightarrow $+1$ \rightarrow \times 3 \rightarrow
3 a $x \rightarrow \frac{x-5}{3}$	b $x \rightarrow 2(x+1)$		
c $x \rightarrow \frac{x}{2} + 3$	$d x \rightarrow x - \frac{2}{7}$		
4 a $x \rightarrow \times 2 \rightarrow -1$	$\rightarrow y$		
y ← +1	→ - <i>x</i>		
c $y = \frac{x+1}{2}$			
5 a $y = \frac{x}{3}$	b $y = x + 4$	c $y = 2x$	
d $y = x - 5$	e $y = -\frac{x}{2}$	f <i>y</i> = - <i>x</i>	
6 a $y = \frac{x-7}{3}$	b $y = \frac{x}{2} + 1$	c $y = 3(x - 4)$	
d $y = 3x + 2$	e $y = \frac{-x+7}{4}$	f $y = -\frac{x}{2} - 5$	
7 $y = \frac{1-x}{2}$	~		

8 Segments of lines:
$$y = \frac{-x-5}{3}$$
 and $y = -2x + 6$

Exercise 10.6

- 1 a 2.10 pm and 3.00 pm
 - **b** 1.00 pm to 1.10 pm and 1.50 pm to 2.10 pm.

c $13\frac{1}{3}$ miles per hour

- **2** The parachute opens at a height of 2000 m: the rate of descent slows and the gradient of the line becomes constant, so the speed of the fall is constant.
- **3 a** 0 and 1 as the gradient is steeper.
 - b 2 seconds
 - **c** 24 m
- **4 a** 64

6 Students' own answer.

10 Check up

Inverse functions

9 a
$$x \to \frac{x}{5}$$

b $x \to \frac{x+7}{2}$
c $y = 3x - 36$
d $y = \frac{x}{3} + 5$

 $\label{eq:and E} \textbf{A} \text{ and E}, \textbf{B} \text{ and F}, \textbf{C} \text{ and D}$

Non-linear graphs

11a Between 0 and 1 hours, the gradient is the steepest.

b About 4 hours.

10 Strengthen

Linear graphs

1 a

x	-3	-2	-1	0	1	2	3
$\frac{1}{2}x$	-1.5	-1	-0.5	0	0.5	1	1.5
+ 3	1.5	2	2.5	3	3.5	4	4.5
у	1.5	2	2.5	3	3.5	4	4.5

b

2 a

x	-3	-2	-1	0	1	2	3
-x + 7	10	9	8	7	6	5	4
2 <i>y</i>	10	9	8	7	6	5	4
У	5	4.5	4	3.5	3	2.5	2

- **3 a** (0, −7)
 - **b** (0, -5)
 - **c** (0, 1)
 - **d** (0, 7)
 - **e** (0, −2)
 - **f** (0, 0)

- **4 a** C
 - **b** 1
 - c A gradient 1; B gradient 2; C gradient 3
- **5** Gradient = $\frac{6}{2}$ = 3
- 6 **a–c** will vary according to point chosen.
 - **d** 4
- **7 a** 1
 - **b** (3)
 - **c** x = 4
 - **d** (5, 9)
- 8 a No
 - **b** (0, 5) and (4, 9)
- 9

Equation	gradient	y-intercept
a <i>y</i> = 3 <i>x</i> + 1	3	(0, 1)
b $y = 2x$	2	(0, 0)
c $y = x + 5$	1	(0, 5)
d $y = 2x - 3$	2	(0, -3)

Equation	gradient	y-intercept
e $y = 5x - 7$	5	(0, -7)
f $y = -2x + 4$	-2	(0, 4)
g $y = -5x - 2$	-5	(0, -2)
h $y = -x + 7$	-1	(0, 7)

10a Parallel

b It is equal

c The coefficient of *x* is the same if the equation is in the form y = mx + c.

 $\boldsymbol{d}~b~and~d$

11a 3

b 4

c y = 3x + 4

12
$$y = -\frac{1}{2}x - 2$$

Inverse functions

Non-linear graphs

- **1** a £75
 - **b** £100
 - c £25, except the first hour when she charges £50
 - **d** £50
- **2** a 13–14 cm
 - b Between 15 and 17 days.
 - c 4 days

Enrichment

- 1 Students' own answers.
- 2 C is the odd one out because it has a gradient of 3 whereas all the others have gradient 2.

```
10 Extend
1 a y = -x
  b Yes
  c y = x
2 a i y = 10 - x
    ii y = 20 - x
    iii y = 8 - x
    iv y = 1 - x
  b They are all self-inverses.
3 a -2
  b y = -2x - 3
4 a y = 3x + c
  b 4 = 3(-2) + c
  c c = 10
  d y = 3x + 10
5 y = -2x + 5
6 a 2
  b 3
  c -2
  d 1
7 y = 3x + 6
8 6
9 y = 3x + 9
10a 1
               b -1
                           c 3
  d 7
               e 9
                              f 4
11a, b
                y_{I}
                5
                4-
                3
                2
                1
```

-5-4-3-2

c y = 3x - 4

-10

2

4

5

2 3

12a 3000 rupees

- **b** £120
- **c** 100
- d The gradient represents how many rupees you get for every $\pounds 1$
- e There is a £20 charge by the bank

```
13a
```



```
b y = 3x - 2
```

c 3n - 2. It is the same as the equation of the line.

d 58

e No. If you substitute y = 23 into the equation of the graph it does not give you a whole number value of *x*.

14a *y* = 2*x* + 1

b 21 cm

```
15a 21:00 and 09:00
```

- **b** 6 hours
- **c** 2
- d 16:30 to 19:30 and 04:30 to 07:30

16 Orange line
$$y = 2x + 5$$
; green line $y = -\frac{1}{2}x + 4$; red line $y = -\frac{1}{2}x - 1$

17a £1276.28

- bΑ
- 18a True
 - **b** True
 - **c** True
 - d False
- **19** Students' own answers.

```
20a (3, 5)
```

b 2

c
$$-\frac{1}{2}$$

d $y = -\frac{1}{2}x + 6.5$

1

21 c and d

KS3 Maths Progress Delta 2

22a 90°

b A (0, 0); B (3, 9); C (30, 0) **c** $3\sqrt{2}\sqrt{5} = 9.49$ **d** $9\sqrt{2}\sqrt{5} = 28.46$

10 Unit test

